Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S1585 - S1603
Published online 02 March 2021
  • A.I. Ali and L.M. Seiford, Translation invariance in data envelopment analysis. Oper. Res. Lett. 9 (1990) 403–405. [Google Scholar]
  • M. Allahyar and M.R. Malkhalifeh, Negative data in data envelopment analysis: efficiency analysis and estimating return to scale. Comput. Ind. Eng. 82 (2015) 78–81. [Google Scholar]
  • G.R. Amin and S.A. Muharram, A new inverse data envelopment analysis model for mergers with negative data. Inst. Math. App. J. Manage. Math. 29 (2018) 137–149. [Google Scholar]
  • J. Aparicio and J.T. Pastor, Closest targets and strong monotonicity on the strongly efficient frontier in DEA. Omega 44 (2014) 51–57. [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • P.L. Brockett, A. Charnes, W.W. Cooper, Z.M. Huang and D.B. Sun, Data transformation in DEA cone ratio envelopment approaches for monitoring bank performances. Eur. J. Oper. Res. 98 (1997) 250–268. [Google Scholar]
  • R.G. Chambers, Y. Chung and R. Fare, Benefit and distance functions. J. Econ. Theory 70 (1996) 407–419. [Google Scholar]
  • R.G. Chambers, Y. Chung and R. Fare, Profit, directional distance functions, and Nerlovian efficiency. J. Optim. Theory App. 98 (1998) 351–364. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • A. Charnes, W.W. Cooper, Q.L. Wei and Z.M. Huang, Cone ratio data envelopment analysis and multi-objective programming. Int. J. Syst. Sci. 20 (1989) 1099–1118. [Google Scholar]
  • G. Cheng, P. Zervopoulos and Z. Qian, A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis. Eur. J. Oper. Res. 225 (2013) 100–105. [Google Scholar]
  • W.W. Cooper, M.L. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Kluwer Academic Publishers, New York, NY 2 (2011) 42–43. [Google Scholar]
  • A. Emrouznejad and A.L. Anouze, A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA. Eur. J. Oper. Res. 200 (2010) 297–304. [Google Scholar]
  • R. Fare and S. Grasskoff, Theory and application of directional distance functions. J. Prod. Anal. 13 (2000) 93–103. [Google Scholar]
  • R. Fare, S. Grasskoff and C.A.K. Lovell, The Measurement of Efficiency of Production. Kluwer Nijhoff Publishing, Boston, MA (1985). [Google Scholar]
  • R. Fare, S. Grasskoff, C.A.K. Lovell and C. Pasurka, Multilateral productivity comparison when some outputs are undesirable: a non-parametric approach. Rev. Econ. Stat. 71 (1989) 90–98. [Google Scholar]
  • R. Fare, S. Grasskoff and C.A.K. Lovell, Production Frontiers. Cambridge University Press, Cambridge, UK (1994). [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc. Ser.-A 120 (1957) 253–281. [Google Scholar]
  • M. Halme, T. Pro and M. Koivu, Dealing with interval-scale data in data envelopment analysis. Eur. J. Oper. Res. 137 (2002) 22–27. [Google Scholar]
  • S.N. Hwang, C. Chen, Y. Chen, H.S. Lee and P.D. Shen, Sustainable design performance evaluation with application in automobile industry: focusing on the inefficiency by undesirable factors. Omega 41 (2013) 553–558. [Google Scholar]
  • A. Koutsoyiannis, Modern Microeconomics, 2nd edition. Macmillan Press Ltd, New York, NY (1979) 76–82. [Google Scholar]
  • R. Lin and Z. Chen, A directional distance based super-efficiency DEA model handling negative data. J. Oper. Res. Soc. 68 (2017) 1312–1322. [Google Scholar]
  • D.G. Luenberger, Benefit functions and duality. J. Math. Econ. 21 (1992) 461–481. [Google Scholar]
  • R.K. Matin and R. Azizi, Modified semi-oriented Radial Measure for measuring the efficiency of DMUs. In: With 3rd Operation, Research Conference (2010). [Google Scholar]
  • M. Mohammadpour, F. Hosseinzadeh-Lotfi and G.R. Jahanshahloo, An extended slacks-based measure model for data envelopment analysis with negative data. J. Oper. Res. Soc. 66 (2015) 1206–1211. [Google Scholar]
  • J.T. Pastor, Efficiency of bank branches through DEA: the attracting of liabilities. Working Paper, Universidad de Alicante, Alicante (1993). [Google Scholar]
  • J.T. Pastor, Translation invariance in data envelopment analysis: a generalization. Ann. Oper. Res. 66 (1996) 93–102. [Google Scholar]
  • J.T. Pastor and J.L. Ruiz, Variable with negative values in DEA, edited by J. Zhu and W.D. Cook. In: Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer, Boston, MA (2007) 63–84. [Google Scholar]
  • M.C.A.S. Portela, E. Thanassoulis and G. Simpson, Negative data in DEA: a directional distance approach applied to bank branches. J. Oper. Res. Soc. 55 (2004) 1111–1121. [Google Scholar]
  • S.C. Ray, Data Envelopment Analysis Theory & Techniques for Economics & Operation Research. Cambridge University Press, New York, NY (2004). [Google Scholar]
  • B.K. Sahoo, M. Khoveyni, R. Eslami and P. Chaudhury, Returns to scale and most productive scale size in DEA with negative data. Eur. J. Oper. Res. 255 (2016) 545–558. [Google Scholar]
  • H. Scheel, Undesirable outputs in efficiency valuations. Eur. J. Oper. Res. 132 (2001) 400–410. [Google Scholar]
  • L.M. Seiford, A bibliography of data envelopment analysis. Working Paper, Department of Industrial Engineering and Operations Research, University of Amherst, MA (1989). [Google Scholar]
  • J.A. Sharp, W.B. Lio and W. Meng, A modified slack-based measure model for data envelopment analysis with “natural” negative outputs and input. J. Oper. Res. Soc. 57 (2006) 1–6. [Google Scholar]
  • R.W. Shephard, Cost and Production Functions. Princeton University Press, Princeton, NJ (1953). [Google Scholar]
  • D.A. Starrett, Measuring returns to scale in the aggregate, and the scale effect of public goods. Econometrica 45 (1977) 1439–1455. [Google Scholar]
  • R.M. Thrall, The lack of invariance of optimal dual solutions under translation. Ann. Oper. Res. 66 (1996) 103–108. [Google Scholar]
  • F. Wei, J. Song, C. Jiao and F. Yang, A modified slacks-based ranking method handling negative data in data envelopment analysis. Willey Expert Syst. 36 (2019) e12329. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.