Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S1207 - S1228
Published online 02 March 2021
  • E. Bartezzaghi, R. Verganti and G. Zotteri, Measuring the impact of asymmetric demand distributions on inventories. Int. J. Prod. Econ. 60–61 (1999) 395–404. [Google Scholar]
  • D. Bertsimas and A. Thiele, A robust optimization approach to inventory theory. Oper. Res. 54 (2006) 150–168. [Google Scholar]
  • W. Bruggeman, H. Muller and S. de Samblanckx, Evaluation of inventory control systems in practice. Tijd. Econ. Manage. 25 (1980) 19–39. [Google Scholar]
  • W. Chen, J. Li and X. Jin, The replenishment policy of agri-products with stochastic demand in integrated agricultural supply chains. Expert Syst. App. 48 (2016) 55–66. [Google Scholar]
  • J. Croston, Forecasting and stock control for intermittent demands. Oper. Res. Q. 23 (1972) 289–303. [Google Scholar]
  • T. Dalenius, The mode – a neglected statistical parameter. J. R. Stat. Soc. (Ser. A) 128 (1965) 110–117. [Google Scholar]
  • F. De Vylder and M. Goovaerts, Upper and lower bounds on stop-loss premiums in case of known expectation and variance of the risk variable. Mitt. Ver. Schweiz. Versicherungsmathematiker 1 (1982) 149–164. [Google Scholar]
  • O. Dey and D. Chakraborty, Fuzzy period review system with fuzzy random variable demand. Eur. J. Oper. Res. 198 (2009) 113–120. [Google Scholar]
  • S. Dharmadhikari and K. Joag-Dev, Unimodality, Convexity, and Applications. Academic Press, Boston, MA (1988). [Google Scholar]
  • W. Feller, An Introduction to Probability Theory and its Applications. Wiley and Sons, New York, NY (1971). [Google Scholar]
  • G. Gallego, A minimax distribution free procedure for the (Q, R) inventory model. Oper. Res. Lett. 11 (1992) 55–60. [Google Scholar]
  • P. Garthwaite, J. Kadane and A. O’Hagan, Statistical methods for eliciting probability distributions. J. Am. Stat. Assoc. 100 (2005) 680–701. [Google Scholar]
  • M. Goovaerts, J. Haezendonck and F. De Vylder, Numerical best bounds on stop-loss premiums. Insur. Math. Econ. 1 (1982) 287–302. [Google Scholar]
  • U. Grenander, Some direct estimates of the mode. Ann. Math. Stat. 36 (1965) 131–138. [Google Scholar]
  • R. Heuts, J. van Lieshout and K. Baken, An inventory model: what is the influence of the shape of the lead time demand distribution. Z. Oper. Res. 30 (1986) B1–B14. [Google Scholar]
  • J. Hull, The accuracy of the means and standard deviations of subjective probability distributions. J. R. Stat. Soc. (Ser. A) 141 (1978) 79–85. [Google Scholar]
  • G.K. Janssens and K. Ramaekers, On the use of bounds on the stop-loss premium for an inventory management decision problem. J. Interdiscip. Math. 11 (2008) 115–126. [Google Scholar]
  • G.K. Janssens and K. Ramaekers, A linear programming formulation for an inventory management decision problem with a service constraint. Expert Syst. App. 38 (2011) 7929–7934. [Google Scholar]
  • G.K. Janssens, K. Ramaekers and L. Verdonck, Linear programming models to support inventory decision-making in the case of incomplete information on demand during lead-time. East West J. Math. 15 (2013) 109–126. [Google Scholar]
  • A. Käaki, A. Salo and S. Talluri, Impact of the shape of demand distribution in decision models for operations management. Comput. Ind. 64 (2013) 765–775. [Google Scholar]
  • D. Keefer and S. Bodily, Three-point approximations for continuous random variables. Manage. Sci. 29 (1983) 595–609. [Google Scholar]
  • B. Li, H.-W. Wang, J.-B. Yang, M. Guo and C. Qi, A belief-rule-based inventory control method under nonstationary and uncertain demand. Expert Syst. App. 38 (2011) 14997–15008. [Google Scholar]
  • D. Malcolm, J. Roseboom, C. Clark and W. Fazar, Application of a technique for research and development program evaluation. Oper. Res. 7 (1959) 646–669. [Google Scholar]
  • E. Naddor, Sensitivity to distributions in inventory systems. Manage. Sci. 24 (1978) 1769–1772. [Google Scholar]
  • S. Nahmias, Production and Operations Analysis. Irwin, Homewood, IL (1993). [Google Scholar]
  • G. Perakis and G. Roels, Regret in the newsvendor model with partial information. Oper. Res. 56 (2008) 188–203. [Google Scholar]
  • C. Perry and I. Greig, Estimating the mean and variance of subjective distributions in PERT and decision analysis. Manage. Sci. 21 (1975) 1477–1480. [Google Scholar]
  • R. Rossi, S. Tarim, B. Hnich and S. Prestwich, Replenishment planning for stochastic inventory systems with shortage cost, edited by P. Van Hentenryck and L. Wolsey. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Springer Berlin-Heidelberg, Berlin (2007) 229–243. [Google Scholar]
  • H. Scarf, A min–max solution of an inventory problem, edited by K. Arrow, S. Karlin and H. Scarf. In: Studies in the Mathematical Methods of Inventory and Production. Stanford University Press, Redwood City, CA (1958) 201–209. [Google Scholar]
  • E.A. Silver, D.F. Pyke and R. Peterson, Inventory Management and Production Planning and Scheduling, 3rd edition. Wiley and Sons, New York, NY (1998). [Google Scholar]
  • A. Syntetos and J. Boylan, The accuracy of intermittent demand estimates. Int. J. Forecast. 21 (2005) 303–314. [Google Scholar]
  • A. Syntetos and J. Boylan, Demand forecasting adjustments for service-level achievement. IMA J. Manage. Math. 19 (2008) 175–192. [Google Scholar]
  • R. Zapata-Vazquez, A. O’Hagan and L. Soares Bastos, Eliciting expert judgments about a set of proportions. J. Appl. Stat. 41 (2014) 1919–1933. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.