Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S1195 - S1206
Published online 02 March 2021
  • S. Aggarwal, Optimality and duality in mathematical programming involving generalized convex functions. Ph.D. thesis, University of Delhi, Delhi (1998). [Google Scholar]
  • M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming. Wiley, New Jersey (2006). [Google Scholar]
  • A. Chinchuluun, A. Migdalas, P.M. Pardalos and L. Pitsoulis, Pareto Optimality: Game Theory and Equilibria. Springer, New York (2008). [Google Scholar]
  • F.H. Clarke, Optimization and Nonsmooth Analysis. John Wiley & Sons, Inc., New York (1983). [Google Scholar]
  • L. Coladas, Z. Li and S. Wang, Optimality conditions for multiobjective and nonsmooth minimisation in abstract spaces. Bull. Aust. Math. Soc. 50 (1994) 205–218. [Google Scholar]
  • E. Constantin, Second-order necessary conditions in locally Lipschitz optimization with inequality constraints. Optim. Lett. 9 (2015) 245–261. [Google Scholar]
  • E. Constantin, First-order necessary conditions in locally Lipschitz multiobjective optimization. Optimization 67 (2018) 1447–1460. [Google Scholar]
  • E. Constantin, Necessary conditions for weak efficiency for nonsmooth degenerate multiobjective optimization problems. J. Global Optim. 75 (2019) 111–129. [Google Scholar]
  • E. Constantin, Higher-order sufficient conditions for optimization problems with Gâteaux differentiable data. Rev. Roum. Math. Pures Appl. 64 (2019) 25–41. [Google Scholar]
  • B.D. Craven, Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10 (1989) 49–64. [Google Scholar]
  • J. Dutta and C.S. Lalitha, Optimality conditions in convex optimization revisited. Optim. Lett. 7 (2013) 221–229. [Google Scholar]
  • G. Giorgi, Optimality conditions under generalized convexity revisited. Ann. Univ. Buchar. (Math. Ser.) 4(LXII) (2013) 479–490. [Google Scholar]
  • J.B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993). [Google Scholar]
  • Q. Ho, Necessary and sufficient KKT optimality conditions in non-convex optimization. Optim. Lett. 11 (2017) 41–46. [Google Scholar]
  • V.I. Ivanov, Higher-order optimality conditions for inequality-constrained problems. Appl. Anal. 92 (2013) 2152–2167. [Google Scholar]
  • J.B. Lasserre, On representations of the feasible set in convex optimization. Optim. Lett. 4 (2010) 1–5. [Google Scholar]
  • S.K. Mishra, On multiple-objective optimization with generalized univexity. J. Math. Anal. App. 224 (1998) 131–148. [Google Scholar]
  • S.K. Mishra and R.N. Mukherjee, On generalised convex multi-objective nonsmooth programming. J. Aust. Math. Soc. Ser. B 38 (1996) 140–148. [Google Scholar]
  • S.K. Mishra, S.Y. Wang and K.K. Lai, Optimality and duality in nondifferentiable and multiobjective programming under generalized d-invexity. J. Global Optim. 29 (2004) 425–438. [Google Scholar]
  • S.K. Mishra, S.Y. Wang and K.K. Lai, Optimality and duality for multiple-objective optimization under generalized type I univexity. J. Math. Anal. App. 303 (2005) 315–326. [Google Scholar]
  • S.K. Mishra, S.Y. Wang and K.K. Lai, Optimality and duality for V -invex non-smooth multiobjective programming problems. Optimization 57 (2008) 635–641. [Google Scholar]
  • S.K. Mishra, S.Y. Wang and K.K. Lai, Optimality and duality for a nonsmooth multiobjective optimization involving generalized type I functions. Math. Methods Oper. Res. 67 (2008) 493–504. [Google Scholar]
  • B. Mond and T. Weir, Generalized concavity and duality. In: Generalized Concavity in Optimization and Economics, edited by S. Schaible and W. Ziemba. Academic Press, New York (1981) 263–279. [Google Scholar]
  • A.A. Schy and D.P. Giesy, Multicriteria optimization methods for design of aircraft control systems, edited by W. Stadler. In: Multicriteria Optimization in Engineering and in the Sciences. Plenum, New York (1981) 225–262. [Google Scholar]
  • W. Stadler, Multicriteria optimization in mechanics: a survey. Appl. Mech. Rev. 37 (1984) 277–286. [Google Scholar]
  • W. Stadler, Multicriteria Optimization in Engineering and in the Sciences. Plenum Press, New York (1988). [Google Scholar]
  • S.K. Suneja, S. Khurana and Vani, Generalized nonsmooth invexity over cones in vector optimization. Eur. J. Oper. Res. 186 (2008) 28–40. [Google Scholar]
  • S.K. Suneja, S. Sharma, M. Grover and M. Kapoor, A different approach to cone-convex optimization. Am. J. Oper. Res. 6 (2013) 536–541. [Google Scholar]
  • S.K. Suneja, S. Sharma and P. Yadav, Optimality and duality for vector optimization problem with non-convex feasible set. OPSEARCH 57 (2020) 1–12. [Google Scholar]
  • T. Weir and B. Mond, Generalised convexity and duality in multiple objective programming. Bull. Aust. Math. Soc. 39 (1989) 287–299. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.