Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S905 - S927
Published online 02 March 2021
  • Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, Editors, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA (2000). [Google Scholar]
  • E. Bampis, J.C. Konig and D. Trystram, Impact of communications on the complexity of the parallel Gaussian elimination. Parallel Comput. 17 (1991) 55–61. [Google Scholar]
  • Å. Björck, Numerical Methods in Matrix Computations. In: Vol. 59 of Texts in Applied Mathematics, edited by: J. Bell, R. Kohn, P. Newton, C. Peskin, R. Pego, L. Ryzhik, A. Singer, A. Stevens, A. Stuart, T. Witelski, S. Wright. Springer, New York, NY (2015). [Google Scholar]
  • R. Butt, Introduction to Numerical Analysis Using MATLAB. Jones and Bartlett Publishers, Burlington, MA (2010). [Google Scholar]
  • T.R. Chandrupatla and A.D. Belegundu, Introduction to Finite Elements in Engineering, 4th edition. Pearson Education, London (2012). [Google Scholar]
  • B. Chapman, G. Jost and R. Van Der Pas, Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press, Cambridge, MA (2008). [Google Scholar]
  • Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures: Challenges, Solutions and Perspectives. Springer Singapore, Singapore (2017). [Google Scholar]
  • F.H. Chishti, A.R. Clare and M. Razaz, Gaussian elimination of symmetric, positive definite, banded systems on transputer networks. In: Transputer/Occam Japan 4. Proceedings of the 4th Transputer/Occam International Conference. IOS Press, Amsterdam (1992) 73–84. [Google Scholar]
  • R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods: From the Viewpoint of Backward Error Analysis. Springer, New York, NY (2013). [Google Scholar]
  • D.A. Cox, Galois Theory. John Wiley & Sons, Hoboken, NJ (2004). [Google Scholar]
  • M. Drozdowski, Scheduling for Parallel Processing. Springer, London (2009). [Google Scholar]
  • W. Gander, M.J. Gander and F. Kwok, Scientific Computing – An Introduction Using Maple and MATLAB. In: Vol. 11 of Texts in Computational Science and Engineering, edited by: T.J. Barth, M. Griebel, D.E. Keyes, R.M. Nieminen, D. Roose, T. Schlick. Springer, New York, NY (2014). [Google Scholar]
  • G.H. Golub and C.F. Van Loan, Matrix Computations, 4th edition. Johns Hopkins University Press, Baltimore, MA (2013). [Google Scholar]
  • A. Greenbaum and T.P. Chartier, Numerical Methods: Design, Analysis, and Computer Implementation of Algorithms. Princeton University Press, Princeton, NJ (2012). [Google Scholar]
  • Grid5000, [Google Scholar]
  • M. Hakem and F. Butelle, Critical path scheduling parallel programs on an unbounded number of processors. Int. J. Found. Comput. Sci. 17 (2006) 287–301. [Google Scholar]
  • D.A. Harville, Matrix Algebra from a Statistician’s Perspective. Springer, New York, NY (1997). [Google Scholar]
  • A. Kavcic and J.M.F. Moura, Matrices with banded inverses: inversion algorithms and factorization of Gauss–Markov processes. IEEE Trans. Inf. Theory 46 (2000) 1495–1509. [Google Scholar]
  • J. Kwiatkowski, Parallel applications performance evaluation using the concept of granularity. In: Vol. 8385 of Lecture Notes in Computer Science. Parallel Processing and Applied Mathematics. Proceedings of the International Conference PPAM 2013, edited by R. Wyrzykowski, J. Dongarra, K. Karczewski, J. Waśniewski. Springer, New York, NY (2014) 215–224. [Google Scholar]
  • M. Marrakchi and Y. Robert, Optimal algorithms for Gaussian elimination on an MIMD computer. Parallel Comput. 12 (1989) 183–194. [Google Scholar]
  • S. Marrakchi and M. Jemni, Fine-grained parallel solution for solving sparse triangular systems on multicore platform using OpenMP interface. In: 2017 International Conference on High Performance Computing Simulation (HPCS). IEEE, New York, NY (2017) 659–666. [Google Scholar]
  • S. Marrakchi and M. Jemni, A parallel scheduling algorithm to solve triangular band systems on multicore machine. In: Vol. 32 of Advances in Parallel Computing. Parallel Computing is Everywhere. Proceedings of the International Conference on Parallel Computing. ParCo 2017, edited by: S. Bassini, M. Danelutto, P. Dazzi, G.R. Joubert, F. Peters. IOS Press, Amsterdam (2018) 127–136. [Google Scholar]
  • S.F. McGinn and R.E. Shaw, Parallel Gaussian elimination using OpenMP and MPI. In: Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications. IEEE, New York, NY (2002) 169–173. [Google Scholar]
  • G. Meurant, Gaussian elimination for the solution of linear systems of equations. In: Vol. 7 of Handbook of Numerical Analysis. Elsevier, New York, NY (2000) 3–170. [Google Scholar]
  • I.Ž. Milovanović, E.I. Milavanović and M.K. Stojčev, An optimal algorithm for Gaussian elimination of band matrices on an MIMD computer. Parallel Comput. 15 (1990) 133–145. [Google Scholar]
  • A. Munir, A. Gordon-Ross and S. Ranka, Modeling and Optimization of Parallel and Distributed Embedded Systems. Wiley-IEEE Press, New York, NY (2016). [Google Scholar]
  • Y. Robert and D. Trystram, Optimal scheduling algorithms for parallel Gaussian elimination. Theor. Comput. Sci. 64 (1989) 159–173. [Google Scholar]
  • Y. Saad, SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations – Version 2. Technical report (1994). [Google Scholar]
  • R. Saad, An optimal schedule for Gaussian elimination on an MIMD architecture. J. Comput. Appl. Math. 185 (2006) 91–106. [Google Scholar]
  • W.H.A. Schilders and E.J.W. Ter Maten, Numerical Methods in Electromagnetics. In: Vol. 13 of Handbook of Numerical Analysis, edited by P. Ciarlet. Elsevier, New York, NY (2005). [Google Scholar]
  • R. Sivarethinamohan, Operations Research. Tata McGraw-Hill, New York, NY (2008). [Google Scholar]
  • R.S. Tsay, Analysis of Financial Time Series, 3rd edition. John Wiley & Sons, New York, NY (2010). [Google Scholar]
  • S. Yu, K. Li and Y. Xu, A DAG task scheduling scheme on heterogeneous cluster systems using discrete IWO algorithm. J. Comput. Sci. 26 (2018) 307–317. [Google Scholar]
  • N. Zhou, D. Qi, X. Wang, Z. Zheng and W. Lin, A list scheduling algorithm for heterogeneous systems based on a critical node cost table and pessimistic cost table. Concurr. Comput. Pract. E. 29 (2017) e3944. [Google Scholar]
  • Z. Zlatev, P. Vu, J. Wasniewski and K. Schaumburg, Computations with symmetric, positive definite and band matrices on a parallel vector processor. Parallel Comput. 8 (1988) 301–312. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.