Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S929 - S946
DOI https://doi.org/10.1051/ro/2020022
Published online 02 March 2021
  • A. Allahverdi, The tricriteria two-machine flowshop scheduling problem. Int. Trans. Oper. Res. 8 (2001) 403–425. [Google Scholar]
  • A. Allahverdi, A new heuristic for m-machine flowshop scheduling problem with bicriteria of makespan and maximum tardiness. Comput. Oper. Res. 31 (2004) 157–180. [Google Scholar]
  • A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs. Eur. J. Oper. Res. 246 (2015) 345–378. [Google Scholar]
  • A. Allahverdi, A survey of scheduling problems with no-wait in process. Eur. J. Oper. Res. 255 (2016) 665–686. [Google Scholar]
  • A. Allahverdi and M. Allahverdi, Two-machine no-wait flowshop scheduling problem with uncertain setup times to minimize maximum lateness. Comput. Appl. Math. 37 (2018) 6774–6794. [Google Scholar]
  • A. Allahverdi and H. Aydilek, Heuristics for two-machine flowshop scheduling problem to minimize makespan with bounded processing times. Int. J. Prod. Res. 48 (2010) 6367–6385. [Google Scholar]
  • A. Allahverdi and H. Aydilek, Heuristics for two-machine flowshop scheduling problem to minimize maximum lateness with bounded processing times. Comput. Math. Appl. 60 (2010) 1374–1384. [Google Scholar]
  • A. Allahverdi and H.M. Soroush, The significance of reducing setup times/setup costs. Eur. J. Oper. Res. 187 (2008) 978–984. [Google Scholar]
  • M. Allahverdi and A. Allahverdi, Algorithms for four-machine flowshop scheduling problem with uncertain processing times to minimize makespan. RAIRO: OR 54 (2020) 529–553. [Google Scholar]
  • M. Allahverdi and A. Allahverdi, Minimizing total completion time in a two-machine no-wait flowshop with uncertain and bounded setup times. J. Ind. Manage. Optim. 16 (2020) 2439–2457. [Google Scholar]
  • M. Allahverdi, H. Aydilek, A. Aydilek and A. Allahverdi, A better dominance relation and heuristics for two-machine no-wait flowshops with maximum lateness performance measure. To appear in: J. Ind. Manage. Optim. (2020). doi: 10.3934/jimo.2020054 [Google Scholar]
  • A. Allahverdi and Y.N. Sotskov, Two-machine flowshop minimum length scheduling problem with random and bounded processing times. Int. Trans. Oper. Res. 10 (2003) 65–76. [Google Scholar]
  • A. Aydilek, H. Aydilek and A. Allahverdi, Increasing the profitability and competitiveness in a production environment with random and bounded setup times. Int. J. Prod. Res. 51 (2013) 106–117. [Google Scholar]
  • A. Aydilek, H. Aydilek and A. Allahverdi, Production in a two-machine flowshop scheduling environment with uncertain processing and setup times to minimize makespan. Int. J. Prod. Res. 53 (2015) 2803–2819. [Google Scholar]
  • A. Aydilek, H. Aydilek and A. Allahverdi, Algorithms for minimizing the number of tardy jobs for reducing production cost with uncertain processing times. Appl. Math. Model. 45 (2017) 982–996. [Google Scholar]
  • H. Aydilek and A. Allahverdi, Two-machine flowshop scheduling problem with bounded processing times to minimize total completion time. Comput. Math. Appl. 59 (2010) 684–693. [Google Scholar]
  • J.F. Chen, Unrelated parallel-machine scheduling to minimize total weighted completion time. J. Intel. Manuf. 26 (2015) 1099–1112. [Google Scholar]
  • J.M. Framinan and P. Perez-Gonzalez, The 2-stage assembly flowshop scheduling problem with total completion time: efficient constructive heuristic and metaheuristic. Comput. Oper. Res. 88 (2017) 237–246. [Google Scholar]
  • J.M. Framinan and P. Perez-Gonzalez, New approximate algorithms for the customer order scheduling problem with total completion time objective. Comput. Oper. Res. 78 (2017) 181–192. [Google Scholar]
  • H.Y. Fuchigami and S. Rangel, A survey of case studies in production scheduling: Analysis and perspectives. J. Comput. Sci. 25 (2018) 425–436. [Google Scholar]
  • E.M. Gonzalez-Neira, D. Ferone, S. Hatami and A.A. Juan, A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times. Simul. Model. Pract. Theory 79 (2017) 23–36. [Google Scholar]
  • T. Keshavarz and N. Salmasi, Makespan minimization in flexible flowshop sequence-dependent group scheduling problem. Int. J. Prod. Res. 51 (2013) 6182–6193. [Google Scholar]
  • P. Kouvelis and G. Yu, Robust Discrete Optimization and its Applications. Kluwer Academic Publisher, Dordrecht (1997). [Google Scholar]
  • T.C. Lai and Y.N. Sotskov, Sequencing with uncertain numerical data for makespan minimization. J. Oper. Res. Soc. 50 (1999) 230–243. [Google Scholar]
  • T.C. Lai, Y.N. Sotskov, N.Y. Sotskova and F. Werner, Optimal makespan scheduling with given bounds of processing times. Math. Comput. Model. 26 (1997) 67–86. [Google Scholar]
  • M. Pinedo, Scheduling Theory, Algorithms, and Systems. Prentice Hall, Englewood Cliffs, NJ (1995) 349. [Google Scholar]
  • H. Seidgar, M. Kiani, M. Abedi and H. Fazlollahtabar, An efficient imperialist competitive algorithm for scheduling in the two-stage assembly flow shop problem. Int. J. Prod. Res. 52 (2014) 1240–1256. [Google Scholar]
  • Y.N. Sotskov, A. Allahverdi and T.C. Lai, Flowshop scheduling problem to minimize total completion time with random and bounded processing times. J. Oper. Res. Soc. 55 (2004) 277–286. [Google Scholar]
  • P. Tayanithi, S. Manivannan and J. Banks, A knowledge-based simulation architecture to analyze interruptions in a flexible manufacturing system. J. Manuf. Syst. 11 (1992) 195–214. [Google Scholar]
  • K. Wang and S.H. Choi, A decomposition-based approach to flexible flow shop scheduling under machine breakdown. Int. J. Prod. Res. 50 (2012) 215–234. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.