Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S947 - S966
DOI https://doi.org/10.1051/ro/2020037
Published online 02 March 2021
  • K.J. Arrow, T. Harris and J. Marschak, Optimal inventory policy. Econometrica 19 (1951) 250–272. [Google Scholar]
  • S. Benjaafar, D. Chen and Y. Yu, Optimal policies for inventory systems with concave ordering costs. Nav. Res. Logist. 65 (2018) 291–302. [Google Scholar]
  • L. Benkherouf, On the optimality of (s, S) inventory policies: a quasivariational approach. J. Appl. Math. Stoch. Anal. 158193 (2008) 1–9. [Google Scholar]
  • L. Benkherouf and A. Bensoussan, Optimality of an (s, S) policy with compound Poisson and diffusion demands: a quasi-variational inequalities approach. SIAM J. Control Optim. 48 (2009) 756–762. [Google Scholar]
  • A. Bensoussan, Dynamic Programming and Inventory Control. IOS Press, Amsterdam (2011). [Google Scholar]
  • A. Bensoussan and J.-L. Lions, Impulse Control and Quasi-Variational Inequalities. Gauthier–Villars, Paris (1984). [Google Scholar]
  • A. Bensoussan, R.H. Liu and S.P. Sethi, Optimality of an (s, S) policy with compound Poisson and diffusion demands: a quasi-variational inequalities approach. SIAM J. Control Optim. 44 (2005) 1650–1676. [Google Scholar]
  • A. Bensoussan and C.S. Tapiero, Impulsive control in management: prospects and applications. J. Optim. Theory App. 37 (1982) 419–442. [Google Scholar]
  • E.J. Fox, R. Metters and J. Semple, Optimal inventory policies with two suppliers. Oper. Res. 54 (2006) 389–393. [Google Scholar]
  • S.K. Goyal and B.C. Giri, Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134 (2001) 1–16. [Google Scholar]
  • G. Hadley and T.M. Whitin, Analysis of Inventory Systems. Prentice–Hall, Englewood Cliffs, NJ (1963). [Google Scholar]
  • S. He, D. Yao and H. Zhang, Optimal ordering policy for inventory systems with quantity-dependent setup costs. Math. Oper. Res. 42 (2017) 979–1006. [Google Scholar]
  • D.L. Iglehart, Optimality of (s, S) policies in the infinite horizon dynamic inventory problem. Manage. Sci. 9 (1963) 259–267. [Google Scholar]
  • A.G. Lagodimos, I.T. Christou and K. Skouri, Computing globally optimal (s, S, T) inventory policies. Omega 40 (2012) 660–671. [Google Scholar]
  • S. Perera, G. Janakiraman and S.-C. Niu, Optimality of (s, S) policies in EOQ models with general cost structures. Int. J. Prod. Econ. 187 (2017) 216–228. [Google Scholar]
  • S. Perera, G. Janakiraman and S.-C. Niu, Optimality of (s, S) inventory policies under renewal demand and general cost structures. Prod. Oper. Manage. 27 (2018) 368–383. [Google Scholar]
  • E.L. Porteus, On the optimality of generalized (s, S) policies. Manage. Sci. 17 (1971) 411–426. [Google Scholar]
  • E.L. Porteus, The optimality of generalized (s, S) policies under uniform demand densities. Manage. Sci. 18 (1972) 644–646. [Google Scholar]
  • E.L. Porteus, Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford, CA (2002). [Google Scholar]
  • P.A. Samuelson, A note on measurement of utility. Rev. Econ. Stud. 4 (1937) 155–161. [Google Scholar]
  • H. Scarf, The optimality of (s, S) policies in the dynamic inventory problem, edited by K.J. Arrow, S. Karlin and P. Suppes. In: Mathematical Methods in the Social Sciences 1959. Stanford University Press, Stanford, CA (1960) 196–202. [Google Scholar]
  • A. Sulem, A solvable one-dimensional model of a diffusion inventory system. Math. Oper. Res. 11 (1986) 125–133. [Google Scholar]
  • A. Sulem, Explicit solution of a two-dimensional deterministic inventory problem. Math. Oper. Res. 11 (1986) 134–146. [Google Scholar]
  • T.L. Urban, Inventory models with inventory-level-dependent demand: a comprehensive review and unifying theory. Eur. J. Oper. Res. 162 (2005) 792–804. [Google Scholar]
  • A.F. Veinott, On the optimality of (s, S) inventory policies: new conditions and a new proof. SIAM J. Appl. Math. 14 (1966) 1067–1083. [Google Scholar]
  • D. Yao, X. Chao and J. Wu, Optimal control policy for a Brownian inventory system with concave ordering cost. J. Appl. Probab. 52 (2015) 909–925. [Google Scholar]
  • D. Yao, X. Chao and J. Wu, Optimal policies for Brownian inventory systems with a piecewise linear ordering cost. IEEE Trans. Autom. Control 62 (2017) 3235–3248. [Google Scholar]
  • E. Zabel, A note on the optimality of (S, s) policies in inventory theory. Manage. Sci. 9 (1962) 123–125. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.