Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S705 - S718
Published online 02 March 2021
  • S.Z. Alparslan Gök, Some results on cooperative interval games. Optimization 63 (2014) 7–13. [Google Scholar]
  • L.Q. Anh and T.Q. Duy, Tykhonov well-posedness for lexicographic equilibrium problems. Optimization 65 (2016) 1929–1948. [Google Scholar]
  • B. Ankenman, B.L. Nelson and J. Staum, Stochastic Kriging for simulation metamodeling. Oper. Res. 58 (2010) 371–382. [Google Scholar]
  • A. Barbagallo and G. Scilla, Stochastic weighted variational inequalities in non-pivot Hilbert spaces with applications to a transportation model. In: New trends in optimization and variational analysis and applications; an international conference in honor of Prof. Michel Théra for his 70th birthday, Quy Nhon, Viet Nam, 2016 December 7–10 (2016). [Google Scholar]
  • E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems. Math. Student. 63 (1994) 123–145. [MathSciNet] [Google Scholar]
  • G.M. Cho, Stability of the multiple objective linear stochastic programming problems. Bull. Korean Math. Soc. 32 (1995) 287–296. [Google Scholar]
  • X. Chen, R.J.-B. Wets and Y. Zhang, Stochastic variational inequalities: residual minimization smoothing sample average approximations. SIAM J. Optim. 22 (2012) 649–673. [Google Scholar]
  • A. Evgrafov and M. Patriksson, On the existence of solutions to stochastic mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 121 (2004) 65–76. [Google Scholar]
  • K. Fan, A minimax inequality and applications, In: Inequality III, edited by O. Shisha. Academic Press, New York, NY (1972) 103–113. [Google Scholar]
  • K. Fan, Some properties of convex sets related to fixed point theorems. Math. Annalen. 266 (1984) 519–537. [Google Scholar]
  • A.P. Farajzadeh, On the symmetric vector quasiequilibrium problems. J. Math. Anal. Appl. 322 (2006) 1099–1110. [Google Scholar]
  • R. Henrion and W. Römisch, Metric regular and quantitative stability in stochastic programs with probabilistic constraints. Math. Program. 84 (1999) 55–88. [Google Scholar]
  • R. Henrion and W. Römisch, Problem-based optimal scenario generation and reduction in stochastic programming. To appear in: Math. Program. (2018) DOI: 10.1007/s10107-018-1337-6. [Google Scholar]
  • D.R. Jones, M. Schonlau and W.J. Welch, Efficient global optimization of expensive black-box functions. J. Global Optim. 13 (1998) 455–492. [Google Scholar]
  • V. Kaňková, Stability in the stochastic programming. Kybernetika 14 (1978) 339–349. [Google Scholar]
  • V. Kaňková, On stability in two-stage stochastic nonlinear programming, edited by P. Mandl and M. Hušková. In: Vol. 5 of Asymptotic Statistics. Springer, Berlin (1994) 329–340. [Google Scholar]
  • V. Kaňková, On the stability in stochastic programming–generalized simple recourse problems. Informatica 5 (1994) 55–78. [Google Scholar]
  • B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fundam. Math. 14 (1929) 132–137. [Google Scholar]
  • L.D. Muu, Stability property of a class of variational inequalities. Math Operationsforsch Statist. Ser. Optim. 15 (1984) 347–351. [Google Scholar]
  • L.D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18 (1992) 1159–1166. [Google Scholar]
  • A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19 (2009) 1574–1609. [Google Scholar]
  • M. Patriksson and L. Wynter, Stochastic mathematical programs with equilibrium constraints. Oper. Res. Lett. 25 (1999) 159–167. [Google Scholar]
  • S.T. Rachev, Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester, UK (1991). [Google Scholar]
  • S.T. Rachev and W. Römisch, Quatitative stability in stochastic programming: the method of probability metrics. Math. Oper. Res. 27 (2002) 792–818. [Google Scholar]
  • U. Ravat and U.V. Shanbhag, On the characterization of solution sets of smooth and nonsmooth convex stochastic nash games. SIAM J. Optim. 21 (2011) 1168–1199. [Google Scholar]
  • U. Ravat and U.V. Shanbhag, On the existence of solutions to stochastic quasi-variational inequality and complementarity problems. Math. Program. 165 (2017) 291–330. [Google Scholar]
  • R.T. Rockafellar and R.J.-B. Wets, Measures as Lagrange multipliers in multistage stochastic programming. J. Math. Anal. Appl. 60 (1977) 301–313. [Google Scholar]
  • R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer, Berlin (1998). [Google Scholar]
  • W. Römisch, Stability of stochastic programming problems, In: Stochastic Programming, edited by A. Rusczyński and A. Shapiro. Vol. 10 of Handbooks in Operations Research and Management Science (2003) 483–554. [Google Scholar]
  • W. Römisch and R.J.-B. Wets, Stability of [epsilon1]-approximate solutions to convex stochastic programs. SIAM J. Optim. 18 (2007) 961–979. [Google Scholar]
  • A. Rusczyński and A. Shapiro, Stochastic programming models, Stochastic Programming, edited by A. Rusczyński and A. Shapiro. In Vol. 10 of Handbooks in Operations Research and Management Science (2003) 1–64. [Google Scholar]
  • A. Rusczyński and A. Shapiro, Optimality and duality in stochastic programming, Stochastic Programming. edited by A. Rusczyński and A. Shapiro. In Vol. 10 of Handbooks in Operations Research and Management Science (2003) 65–139. [Google Scholar]
  • U.V. Shanbhag, Stochastic variational inequality problems: applications, analysis, and algorithms. TUTORIALS Oper. Res. 2013 (2013) 71–107. [Google Scholar]
  • A. Shapiro, Stochastic programming approach to optimization under uncertainty. Math. Program Ser. B. 112 (2008) 183–220. [Google Scholar]
  • A. Shapiro and H. Xu, Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation. Optimization 57 (2008) 395–418. [Google Scholar]
  • W. Takahashi, Nonlinear variational inequalities and fixed point theorems. J. Math. Soc. Jpn. 28 (1976) 168–181. [Google Scholar]
  • P. Terán, On consistency of stationary points of stochastic optimization problems in a Banach space. J. Math. Anal. Appl. 363 (2010) 569–578. [Google Scholar]
  • R. Wangkeeree and U. Kamraksa, Existence theorems and iterative approximation methods for generalized mixed equilibrium problems for a countable family of nonexpansive mappings. J. Global Optim. 54 (2012) 27–46. [Google Scholar]
  • G.-W. Weber, A. Kruger, J.E. Martínez-Legaz, B. Mordukhovich and L. Sakalauskas, Special Issue on recent advances in continuous optimization on the occasion of the 25th European conference on Operational Research (EURO XXV 2012). Optimization 63 (2014) 1–166. [Google Scholar]
  • R.J.-B. Wets, Stochastic programming, edited by G.L. Nemhauser. In Vol. 1 of Handbooks in Operations Research and Management Science (1989) 573–629. [Google Scholar]
  • H. Xu, Uniform exponential convergence of sample average random functions under general sampling with applications in stochastic programming. J. Math. Anal. Appl. 368 (2010) 692–710. [Google Scholar]
  • H. Xu, Sample average approximation methods for a class of stochastic variational inequality problems. Asia Pac. J. Oper. Res. 27 (2010) 103–119. [Google Scholar]
  • H. Xu and J.J. Ye, Necessary optimality conditions for two-stage stochastic programs with equilibrium constraints. SIAM J. Optim. 20 (2010) 1685–1715. [Google Scholar]
  • H. Xu and D. Zhang, Stochastic Nash equilibrium problems: sample average approximation and applications. Comput. Optim. Appl. 55 (2013) 597–645. [Google Scholar]
  • J. Zhang, Y. Ma, T. Yang and L. Liu, Estimation of the Pareto front in stochastic simulation through stochastic Kriging. Simul. Model Pract. Theory. 79 (2017) 69–86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.