Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S699 - S704
DOI https://doi.org/10.1051/ro/2020004
Published online 02 March 2021
  • C. Balbuena and X. Marcote, The p-restricted edge-connectivity of Kneser graphs. Appl. Math. Comput. 343 (2019) 258–267. [Google Scholar]
  • F.T. Boesch, Synthesis of reliable networks – a survey. IEEE Trans. Reliab. 35 (1986) 240–246. [Google Scholar]
  • F. Boesch and R. Tindell, Circulants and their connectivities. J. Graph Theory 8 (1984) 487–499. [Google Scholar]
  • G. Boruzanlı Ekinci and J.B. Gauci, On the reliability of generalized Petersen graphs. Discrete Appl. Math. 252 (2019) 2–9. [Google Scholar]
  • G. Boruzanlı Ekinci and J.B. Gauci, The super-connectivity of Johnson graphs. Discrete Math. Theor. Comput. Sci. 22 (2020) 12. [Google Scholar]
  • G. Boruzanlı Ekinci and J.B. Gauci, The super-connectivity of Kneser graphs. Discuss. Math. Graph Theory 39 (2019) 5–11. [Google Scholar]
  • G. Boruzanlı Ekinci and A. Kırlangiç, Super connectivity of Kronecker product of complete bipartite graphs and complete graphs. Discrete Math. 339 (2016) 1950–195. [Google Scholar]
  • X.L. Cao and E. Vumar, Super edge connectivity of Kronecker products of graphs. Int. J. Found. Comput. Sci. 25 (2014) 59–65. [Google Scholar]
  • B.L. Chen and K.-W. Lih, Hamiltonian uniform subset graphs. J. Comb. Theory, Ser. B. 42 (1987) 257–263. [Google Scholar]
  • C. Dalfó Simó, M. À. Fiol Mora and M.M. Riera, On middle cube graphs. Electron. J. Graph Theory App. 3 (2015) 133–145. [Google Scholar]
  • G. Gévay and T. Pisanski, Kronecker covers, V-construction, unit-distance graphs and isometric point-circle configurations. Ars Math. Contemp. 7 (2013). [Google Scholar]
  • L. Guo and X. Guo, Super connectivity of Kronecker products of some graphs. Ars Comb. 123 (2015) 65–73. [Google Scholar]
  • L. Guo, G. Su, W. Lin and J. Chen, Fault tolerance of locally twisted cubes. Appl. Math. Comput. 334 (2018) 401–406. [Google Scholar]
  • F. Harary, Conditional connectivity. Networks 13 (1983) 347–357. [Google Scholar]
  • M.-C. Heydemann, Cayley graphs and interconnection networks, edited by G. Hahn and G. Sabidussi. In: Graph Symmetry: Algebraic Methods and Applications. Springer Netherlands, Dordrecht (1997) 167–224. [Google Scholar]
  • J.-S. Kim, E. Cheng, L. Liptak and H.-O. Lee, Embedding hypercubes, rings, and odd graphs into hyper-stars. Int. J. Comput. Math. 86 (2009) 771–778. [Google Scholar]
  • A. Kowalewski, WR Hamilton’s Dodekaederaufgabe als Buntordnungproblem. Sitzungsber. Akad. Wiss. Wien (Abt. IIa) 126 (1917) 67–90, 963–1007. [Google Scholar]
  • L. Lovász, Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory Ser. A. 25 (1978) 319–324. [Google Scholar]
  • M. Lü, C. Wu, G.-L. Chen and C. Lv, On super connectivity of Cartesian product graphs. Networks 52 (2008) 78–87. [Google Scholar]
  • S.M. Mirafzal, On the automorphism groups of regular hyperstars and folded hyperstars. Ars Comb. 123 (2011) 75–86. [Google Scholar]
  • S.M. Mirafzal and A. Zafari, Some algebraic properties of bipartite Kneser graphs. Preprint arXiv:1804.04570, to appear in Ars Combinatoria (2018). [Google Scholar]
  • T. Mütze and P. Su, Bipartite Kneser graphs are Hamiltonian. Electron. Notes Discrete Math. 49 (2015) 259–267. [Google Scholar]
  • M.E. Watkins, Connectivity of transitive graphs. J. Comb. Theory 8 (1970) 23–29. [Google Scholar]
  • W. Yang and J. Meng, Extraconnectivity of hypercubes. Appl. Math. Lett. 22 (2009) 887–891. [Google Scholar]
  • W. Yang and J. Meng, Extraconnectivity of hypercubes (II). Australas. J. Comb. 47 (2010) 189–195. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.