Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S1515 - S1528
DOI https://doi.org/10.1051/ro/2020121
Published online 02 March 2021
  • M. Allahverdi and A. Allahverdi, Algorithms for four-machine flowshop scheduling problem with uncertain processing times to minimize makespan. RAIRO:OR 54 (2020) 529–553. [Google Scholar]
  • K. Amrouche and M. Boudhar, Two machines flow shop with reentrance and exact time lag. RAIRO:OR 50 (2016) 223–232. [Google Scholar]
  • E. Babaee Tirkolaee, A. Goli and G.W. Weber, Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Trans. Fuzzy Syst. 28 (2020) 2772–2783. [Google Scholar]
  • K.R. Baker and D. Trietsch, Principles of Sequencing and Scheduling. John Wiley & Sons (2013). [Google Scholar]
  • R.E. Burkard, V.G. Deineko, R. van Dal, J.A.A. van der Veen and G.J. Woeginger, Well-solvable special cases of the traveling salesman problem: a survey. SIAM Rev. 40 (1998) 496–546. [Google Scholar]
  • M.H. Fazel Zarandi, A.A. Sadat Asl, S. Sotudian and O. Castillo, A state of the art review of intelligent scheduling. Artif. Intell. Rev. 53 (2020) 501–593. [Google Scholar]
  • D.P. Filev and R.R. Yager, A generalized defuzzification method via bad distributions. Int. J. Intell. Syst. 6 (1991) 687–697. [Google Scholar]
  • P.C. Gilmore and R.E. Gomory, Sequencing a one state-variable machine: a solvable case of the traveling salesman problem. Oper. Res. 12 (1964) 655–679. [Google Scholar]
  • A. Goli, E.B. Tirkolaee and M. Soltani, A robust just-in-time flow shop scheduling problem with outsourcing option on subcontractors. Prod. Manuf. Res. 7 (2019) 294–315. [Google Scholar]
  • H. Golpîra and E. B. Tirkolaee, Stable maintenance tasks scheduling: A bi-objective robust optimization model. Comput. Ind. Eng. 137 (2019) 106007. [Google Scholar]
  • M. Hanss, Applied Fuzzy Arithmetic: An Introduction with Engineering Applications. Springer, Berlin-Heidelberg (2005). [Google Scholar]
  • H. Kise, T. Shioyama and T. Ibaraki, Automated two-machine flowshop scheduling: a solvable case. IIE Trans. 23 (1991) 10–16. [Google Scholar]
  • E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, Sequencing and scheduling: Algorithms and complexity. In: Logistics of Production and Inventory, edited by S.S. Graves, A.H.G. Rinnooy Kan, P. Zipkin. Vol. 4 of Handbooks in Operations Research and Management Science. North-Holland (1993) 445–522. [Google Scholar]
  • L. Lei, R. Armstrong and S. Gu, Minimizing the fleet size with dependent time-window and single-track constraints. Oper. Res. Lett. 14 (1993) 91–98. [Google Scholar]
  • J. Leung and G. Zhang, Optimal cyclic scheduling for printed circuit board production lines with multiple hoists and general processing sequence. IEEE Trans. Robot. Autom. 19 (2003) 480–484. [Google Scholar]
  • E.V. Levner, Optimal planning of parts’ machining on a number of machines. Autom. Remote Control 12 (1969) 1972–1978. [Google Scholar]
  • E. Levner, K. Kogan and O. Maimon, Flowshop scheduling of robotic cells with job-dependent transportation and set-up effects. J. Oper. Res. Soc. 46 (1995) 1447–1455. [Google Scholar]
  • W. Li, J. Li , K. Gao, Y. Han, B. Niu, Z. Liu and Q. Sun, Solving robotic distributed flowshop problem using an improved iterated greedy algorithm. Int. J. Adv. Robot. Syst. 16 (2019) 1729881419879819. [Google Scholar]
  • E.N. Nasibov and A. Mert, On methods of defuzzification of parametrically represented fuzzy numbers. Autom. Control Comput. Sci. 41 (2007) 265–273. [Google Scholar]
  • M. Rabbani, M. Samavati, M.S. Ziaee and H. Rafiei, Reconfigurable dynamic cellular manufacturing system: a new bi-objective mathematical model. RAIRO:OR 48 (2014) 75–102. [Google Scholar]
  • A.A. Sadat Asl, M.H. Fazel Zarandi, S. Sotudian and A. Amini, A fuzzy capacitated facility location-network design model: a hybrid firefly and invasive weed optimization (FIWO) solution. Iran. J. Fuzzy Syst. 17 (2020) 79–95. [Google Scholar]
  • H.I. Stern and G. Vitner, Scheduling parts in a combined production-transportation work cell. J. Oper. Res. Soc. 41 (1990) 625–632. [Google Scholar]
  • S. Sotudian, M.H.F. Zarandi and I.B. Turksen, From Type-I to Type-II fuzzy system modeling for diagnosis of hepatitis. Int. J. Comput. Inf. Eng. 10 (2016) 1280–1288. [Google Scholar]
  • A. Tajdin, I. Mahdavi, N. Mahdavi-Amiri and B. Sadeghpour-Gildeh, Computing a fuzzy shortest path in a network with mixed fuzzy arc lengths using alpha-cuts. Comput. Math. Appl. 60 (2010) 989–1002. [Google Scholar]
  • P. Wanke, C.P. Barros and A. Emrouznejad, A comparison between stochastic DEA and fuzzy DEA approaches: revisiting efficiency in Angolan banks. RAIRO:OR 52 (2018) 285–303. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.