Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S1487 - S1513
Published online 02 March 2021
  • M. Abbassi, M. Ashrafi and E.S. Tashnizi, Selecting balanced portfolios of R&D projects with interdependencies: a cross-entropy based methodology. Technovation 34 (2014) 54–63. [CrossRef] [Google Scholar]
  • D.C. Alvarado, S. Acha, N. Shah and C.N. Markides, A Technology Selection and Operation (TSO) optimisation model for distributed energy systems: mathematical formulation and case study. Appl. Energy 180 (2016) 491–503. [Google Scholar]
  • S. Ardabili, Technology portfolio modeling in hybrid environment. Afr. J. Bus. Manage. 5 (2011) 4051–4058. [Google Scholar]
  • N.M. Arratia, I.F. Lopez, S.E. Schaeffer and L. Cruz-Reyes, Static R&D project portfolio selection in public organizations. Decis. Support Syst. 84 (2016) 53–63. [Google Scholar]
  • H. Davoudpour, S. Rezaee and M. Ashrafi, Developing a framework for renewable technology portfolio selection: a case study at a R&D center. Renew. Sustainable Energy Rev. 16 (2012) 4291–4297. [Google Scholar]
  • M.P. de Matos, L.M. de Melo and M. Kahn, editors, Financing Innovation. Routledge, London (2014). [Google Scholar]
  • M.W. Dickinson, A.C. Thornton and S. Graves, Technology portfolio management: optimizing interdependent projects over multiple time periods. IEEE Trans. Eng. Manage. 48 (2001) 518–527. [Google Scholar]
  • A. Emelogu, S. Chowdhury, M. Marufuzzaman, L. Bian and B. Eksioglu, An enhanced sample average approximation method for stochastic optimization. Int. J. Prod. Econ. 182 (2016) 230–252. [Google Scholar]
  • S.S. Ghazinoori and S.S. Ghazinoori, An Introduction to Science, Technology and Innovation Policy Making, 2nd edition. Tarbiat Modares University (In Persian), Tehran (2014). [Google Scholar]
  • H. Gupta and M.K. Barua, Identifying enablers of technological innovation for Indian MSMEs using best-worst multi criteria decision making method. Technol. Forecasting Soc. Change 107 (2016) 69–79. [Google Scholar]
  • H. Gupta and M.K. Barua, Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. J. Cleaner Prod. 152 (2017) 242–258. [Google Scholar]
  • G. Gurkan, A.Y. Ozge and T.M. Robinson, Sample-path optimization in simulation. In: Proceedings of Winter Simulation Conference. IEEE, Lake Buena Vista, FL (1994) 247–254. [Google Scholar]
  • F. Hassanzadeh, H. Nemati and M. Sun, Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection. Eur. J. Oper. Res. 238 (2014) 41–53. [Google Scholar]
  • T. Homem-De-Mello, Variable-sample methods for stochastic optimization. ACM Trans. Model. Comput. Simul. (TOMACS) 13 (2003) 108–133. [Google Scholar]
  • C.Y. Huang, C.C. Chiou, T.H. Wu and S.C. Yang, An integrated DEA-MODM methodology for portfolio optimization. Oper. Res. 15 (2015) 115–136. [Google Scholar]
  • M. Jafarzadeh, H.R. Tareghian, F. Rahbarnia and R. Ghanbari, Optimal selection of project portfolios using reinvestment strategy within a flexible time horizon. Eur. J. Oper. Res. 243 (2015) 658–664. [Google Scholar]
  • A. Jahani, P. Mohammadi and H. Mashreghi, Effect of risk on evaluating the financing methods of new technology-based firms. Int. J. Ind. Eng. Prod. Res. 29 (2018) 133–146. [Google Scholar]
  • E. Karasakal and P. Aker, A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem. Omega 73 (2017) 79–92. [Google Scholar]
  • O. Kocadağlı and R. Keskin, A novel portfolio selection model based on fuzzy goal programming with different importance and priorities. Expert Syst. App. 42 (2015) 6898–6912. [Google Scholar]
  • F. Kucukbay and C. Araz, Portfolio selection problem: a comparison of fuzzy goal programming and linear physical programming. Int. J. Optim. Control: Theor. App. (IJOCTA) 6 (2016) 121–128. [Google Scholar]
  • C. Li, F. Liu, X. Tan and Y. Du, A methodology for selecting a green technology portfolio based on synergy. Int. J. Prod. Res. 48 (2010) 7289–7302. [Google Scholar]
  • B. Li, Y. Zhu, Y. Sun, G. Aw and K.L. Teo, Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Appl. Math. Model. 56 (2018) 539–550. [Google Scholar]
  • I.S. Litvinchev, F. López, A. Alvarez and E. Fernández, Large-scale public R&D portfolio selection by maximizing a biobjective impact measure. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 40 (2010) 572–582. [Google Scholar]
  • J.C. Mankins, Technology readiness and risk assessments: a new approach. Acta Astron. 65 (2009) 1208–1215. [Google Scholar]
  • H. Markowitz, Portfolio selection. J. Finance 7 (1952) 77–91. [Google Scholar]
  • K. Marti, Y. Ermoliev, M. Makowski and G. Pflug, editors. Coping with Uncertainty: Modeling and Policy Issues. Springer Science & Business Media 581 (2006). [Google Scholar]
  • Z. Mashayekhi and H. Omrani, An integrated multi-objective Markowitz–DEA cross-efficiency model with fuzzy returns for portfolio selection problem. Appl. Soft Comput. 38 (2016) 1–9. [Google Scholar]
  • V. Mohagheghi, S.M. Mousavi, B. Vahdani and M.R. Shahriari, R&D project evaluation and project portfolio selection by a new interval type-2 fuzzy optimization approach. Neural Comput. App. 28 (2017) 3869–3888. [Google Scholar]
  • N. Mohebbi and A.A. Najafi, Credibilistic multi-period portfolio optimization based on scenario tree. Phys. A: Stat. Mech. App. 492 (2018) 1302–1316. [Google Scholar]
  • N. Mokhtarzadeh, S.S. Ahangari and M. Faghei, Proposing a three dimensional model for selecting a portfolio of R&D projects. IAMOT 2016 Conference Proceedings, Orlando, FL (2016). [Google Scholar]
  • A. Namazian and S.H. Yakhchali, Modeling and solving project portfolio and contractor selection problem based on project scheduling under uncertainty. Proc.-Soc. Behav. Sci. 226 (2016) 35–42. [Google Scholar]
  • M.E. Raynor and X. Leroux, Strategic flexibility in R&D. Res.-Technol. Manage. 47 (2004) 27–32. [Google Scholar]
  • J. Rezaei, Best-worst multi-criteria decision-making method. Omega 53 (2015) 49–57. [Google Scholar]
  • J. Rezaei, J. Wang and L. Tavasszy, Linking supplier development to supplier segmentation using Best Worst Method. Expert Syst. App. 42 (2015) 9152–9164. [Google Scholar]
  • J. Rezaei, T. Nispeling, J. Sarkis and L. Tavasszy, A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. J. Cleaner Prod. 135 (2016) 577–588. [Google Scholar]
  • R.Y. Rubinstein and A. Shapiro, Optimization of static simulation models by the score function method. Math. Comput. Simul. 32 (1990) 373–392. [Google Scholar]
  • R.Y. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. John Wiley & Sons Inc, New York, NY (1993). [Google Scholar]
  • N. Salimi, Quality assessment of scientific outputs using the BWM. Scientometrics 112 (2017) 195–213. [PubMed] [Google Scholar]
  • N. Salimi and J. Rezaei, Measuring efficiency of university-industry Ph.D. projects using best worst method. Scientometrics 109 (2016) 1911–1938. [PubMed] [Google Scholar]
  • N. Salimi and J. Rezaei, Evaluating firms’ R&D performance using best worst method. Eval. Prog. Plan. 66 (2018) 147–155. [Google Scholar]
  • T.L. Satty, The Analytic Hierarchy Process. McGraw-Hill International, New York, NY (1980). [Google Scholar]
  • M. Shariatmadari, N. Nahavandi, S.H. Zegordi and M.H. Sobhiyah, Integrated resource management for simultaneous project selection and scheduling. Comput. Ind. Eng. 109 (2017) 39–47. [Google Scholar]
  • M. Tavana, K. Khalili-Damghani and S. Sadi-Nezhad, A fuzzy group data envelopment analysis model for high-technology project selection: a case study at NASA. Comput. Ind. Eng. 66 (2013) 10–23. [Google Scholar]
  • M. Tavana, M. Keramatpour, F.J. Santos-Arteaga and E. Ghorbaniane, A fuzzy hybrid project portfolio selection method using data envelopment analysis, TOPSIS and integer programming. Expert Syst. App. 42 (2015) 8432–8444. [Google Scholar]
  • R.J. Terrile, B.L. Jackson and A.P. Belz, Consideration of risk and reward in balancing technology portfolios. In: 2014 IEEE Aerospace Conference. IEEE, Big Sky, MT (2014) 1–8. [Google Scholar]
  • S.A. Torabi, R. Giahi and N. Sahebjamnia, An enhanced risk assessment framework for business continuity management systems. Safety Sci. 89 (2016) 201–218. [Google Scholar]
  • M. Velasquez and P.T. Hester, An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 10 (2013) 56–66. [Google Scholar]
  • J. Wonglimpiyarat, Entrepreneurial financing for venture and innovation development. Int. J. Foresight Innov. Policy 5 (2009) 234–243. [Google Scholar]
  • J. Wonglimpiyarat, Government programmes in financing innovations: comparative innovation system cases of Malaysia and Thailand. Technol. Soc. 33 (2011) 156–164. [Google Scholar]
  • J. Wonglimpiyarat, Technology Financing and Commercialization: Exploring the Challenges and How Nations Can Build Innovative Capacity. Palgrave Macmillan UK, London (2014). [Google Scholar]
  • Y. Wu, C. Xu, Y. Ke, K. Chen and X. Sun, An intuitionistic fuzzy multi-criteria framework for large-scale rooftop PV project portfolio selection: case study in Zhejiang, China. Energy 143 (2018) 295–309. [Google Scholar]
  • O. Yu, Technology Portfolio Planning and Management: Practical Concepts and Tools. In Vol. 96 of International Series in Operations Research & Management Science Springer, New York, NY (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.