Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2509 - S2541
DOI https://doi.org/10.1051/ro/2020118
Published online 02 March 2021
  • H. Adeinat and J.A. Ventura, Integrated pricing and lot-sizing decisions in a serial supply chain. Appl. Math. Model. 54 (2018) 429–445. [Google Scholar]
  • Z.A. Afrouzy, S.H. Nasseri, I. Mahdavi and M.M. Paydar, A fuzzy stochastic multi-objective optimization model to configure a supply chain considering new product development. Appl. Math. Model. 40 (2016) 7545–7570. [Google Scholar]
  • A. Ait-Alla, M. Teucke, M. Lutjen, S. Beheshti-Kashi and H.R. Karimi, Robust production planning in fashion apparel industry under demand uncertainty via conditional value at risk. Math. Prob. Eng. 2014 (2014) 1–10. [Google Scholar]
  • M. Alizadeh, A. Makui and M.M. Paydar, Forward and reverse supply chain network design for consumer medical supplies considering biological risk. Comput. Ind. Eng. 140 (2020) 106229. [Google Scholar]
  • A. Amindoust and A. Saghafinia, Textile supplier selection in sustainable supply chain using a modular fuzzy inference system model. J. Textile Inst. 108 (2017) 1250–1258. [Google Scholar]
  • A. Arabsheybani, M.M. Paydar and A.S. Safaei, An integrated fuzzy MOORA method and FMEA technique for sustainable supplier selection considering quantity discounts and supplier’s risk. J. Cleaner Prod. 190 (2018) 577–591. [Google Scholar]
  • A. Attanasio, A. Fuduli, G. Ghiani and C. Triki, Integrated shipment dispatching and packing problems: a case study. J. Math. Model. Alg. 6 (2007) 77–85. [Google Scholar]
  • S. Ben Salah, W. Ben Yahia, O. Ayadi and F. Masmoudi, An integrated Fuzzy ANP-MOP approach for partner selection problem and order allocation optimization: the case of virtual enterprise configuration. RAIRO:OR 53 (2019) 223-241. [Google Scholar]
  • S. Bhuniya, B. Sarkar and S. Pareek, Multi-product production system with the reduced failure rate and the optimum energy consumption under variable demand. Mathematics 7 (2019) 465. [Google Scholar]
  • P. Beraldi, R. Musmanno and C. Triki, Solving stochastic linear programs with restricted recourse using interior point methods. Comput. Optim. App. 15 (2000) 215–234. [Google Scholar]
  • M.P. De Brito, V. Carbone and C.M. Blanquart, Towards a sustainable fashion retail supply chain in Europe: organisation and performance. Int. J. Prod. Econ. 114 (2008) 534–553. [Google Scholar]
  • B.K. Dey, B. Sarkar, M. Sarkar and S. Pareek, An integrated inventory model involving discrete setup cost reduction, variable safety factor, selling price dependent demand, and investment. RAIRO:OR 53 (2019) 39–57. [Google Scholar]
  • B.K. Dey, S. Pareek, M. Tayyab and B. Sarkar, Autonomation policy to control work-in-process inventory in a smart production system. Int. J. Prod. Res. (2020) 1–23. [Google Scholar]
  • A.F. Fathollahi-Fard, F. Gholian-Jouybari, M.M. Paydar and M. Hajiaghaei-Keshteli, A bi-objective stochastic closed-loop supply chain network design problem considering downside risk. Ind. Eng. Manage. Syst. 16 (2017) 342–362. [Google Scholar]
  • A.M. Fathollahi-Fard, M. Hajiaghaei-Keshteli and S. Mirjalili, Multi-objective stochastic closed-loop supply chain network design with social considerations. Appl. Soft Comput. 71 (2018) 505–525. [Google Scholar]
  • H. Felfel, O. Ayadi and F. Masmoudi, A decision-making approach for a multi-objective multisite supply network planning problem. Int. J. Comput. Integr. Manuf. 29 (2016) 754–767. [Google Scholar]
  • H. Felfel, W.B. Yahia, O. Ayadi and F. Masmoudi, Stochastic multi-site supply chain planning in textile and apparel industry under demand and price uncertainties with risk aversion. Ann. Oper. Res. 271 (2018) 551–574. [Google Scholar]
  • B. Giri and S. Sharma, Manufacturer’s pricing strategy in a two-level supply chain with competing retailers and advertising cost dependent demand. Econ. Model. 38 (2014) 102–111. [Google Scholar]
  • Z.H. Gümüş and C.A. Floudas, Deterministic global optimization of mixed integer bilevel programming problems. In: Foundations of Computer Aided Process Design (FOCAPD) Conference Proceedings (2004) 529–532. [Google Scholar]
  • S. Gunpinar, Supply chain optimization of blood products. Ph.D. dissertation, University of South Florida, Tampa, FL (2013). [Google Scholar]
  • Z. Guo, W.K. Wong, S.Y.-S. Leung, J. Fan and S. Chan, Mathematical model and genetic optimization for the job shop scheduling problem in a mixed-and multi-product assembly environment: a case study based on the apparel industry. Comput. Ind. Eng. 50 (2006) 202–219. [Google Scholar]
  • M. Habibi-Kouchaksaraei, M.M. Paydar and E. Asadi-Gangraj, Designing a bi-objective multi-echelon robust blood supply chain in a disaster. Appl. Math. Model. 55 (2018) 583–599. [Google Scholar]
  • F.S. Hillier and G.J. Lieberman, Introduction to Operations Research, 7th Edition, Chapter 12. McGraw-Hill Companies (2000). [Google Scholar]
  • O. Ismail, T. Trutsi and Y.N. Chen, Who is next? E-commerce strategy for the development of an apparel manufacturer. Int. Conf. Inf. Manage. Innov. Manage. Ind. Eng. 3 (2011) 545–548. [Google Scholar]
  • O. Jadidi, M.Y. Jaber and S. Zolfaghari, Joint pricing and inventory problem with price dependent stochastic demand and price discounts. Comput. Ind. Eng. 114 (2017) 45–53. [Google Scholar]
  • S.K. Jakhar, Designing the green supply chain performance optimisation model. Global J. Flexible Syst. Manage. 15 (2014) 235–259. [Google Scholar]
  • S.K. Jakhar, Performance evaluation and a flow allocation decision model for a sustainable supply chain of an apparel industry. J. Cleaner Prod. 87 (2015) 391–413. [Google Scholar]
  • S. Karami, R. Ghasemy Yaghin and F. Mousazadegan, Supplier selection and evaluation in the garment supply chain: an integrated DEA–PCA–VIKOR approach. J. Text. Inst. (2020) 1–18. [Google Scholar]
  • M. Liu, X. Xu and D. Zhang, Integrated optimization model for distribution network design: a case study of the clothing industry. Int. Trans. Oper. Res. 26 (2019) 1269–1292. [Google Scholar]
  • T. Maiti and B.C. Giri, Two-period pricing and decision strategies in a two-echelon supply chain under price-dependent demand. Appl. Math. Model. 42 (2017) 655–674 [Google Scholar]
  • G. Martino, B. Yuce, R. Iannone and M.S. Packianather, Optimisation of the replenishment problem in the fashion retail industry using Tabu-Bees algorithm. IFAC-PapersOnLine 49 (2016) 1685–1690. [Google Scholar]
  • R. Musmanno, N. Scordino, C. Triki and A. Violi, A multistage formulation for generation companies in a multi-auction electricity market. IMA J. Manage. Math. 21 (2010) 165–181. [Google Scholar]
  • M. Noori-Daryan, A.A. Taleizadeh and K. Govindan, Joint replenishment and pricing decisions with different freight modes considerations for a supply chain under a composite incentive contract. J. Oper. Res. Soc. 69 (2017) 876–894. [Google Scholar]
  • P. Nourmohamadi Shalke, M.M. Paydar and M. Hajiaghaei-Keshteli, Sustainable supplier selection and order allocation through quantity discounts. Int. J. Manage. Sci. Eng. Manage. 13 (2018) 20–32. [Google Scholar]
  • L. Pavão, C. Pozo, C. Costa, M. Ravagnani and L. Jiménez, A meta-heuristic approach for financial risks management in heat exchanger networks. Comput. Aided Chem. Eng. Elsevier 40 (2017) 955–960. [Google Scholar]
  • M.M. Paydar and M. Olfati, Designing and solving a reverse logistics network for polyethylene terephthalate bottles. J. Cleaner Prod. 195 (2018) 605–617. [Google Scholar]
  • M.M. Paydar and M. Saidi-Mehrabad, Revised multi-choice goal programming for integrated supply chain design and dynamic virtual cell formation with fuzzy parameters. Int. J. Comput. Integr. Manuf. 28 (2015) 251–265. [Google Scholar]
  • M.M. Paydar, V. Babaveisi and A.S. Safaei, An engine oil closed-loop supply chain design considering collection risk. Comput. Chem. Eng. 104 (2017) 38–55. [Google Scholar]
  • E. Rahimi, M.M. Paydar, I. Mahdavi, J. Jouzdani and A. Arabsheybani, A robust optimization model for multi-objective multi-period supply chain planning under uncertainty considering quantity discounts. J. Ind. Prod. Eng. 35 (2018) 214–228. [Google Scholar]
  • M. Ramezani, M. Bashiri and R. Tavakkoli-Moghaddam, A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Appl. Math. Model. 37 (2013) 328–344. [Google Scholar]
  • E. Rezaei, M.M. Paydar and A.S. Safaei, Customer relationship management and new product development in designing a robust supply chain. RAIRO:OR 54 (2020) 369–391. [Google Scholar]
  • I. Safra, Vers une approche intégrée de gestion de planification de la production et de la distribution : cas de l’industrie textile. Ph.D. thesis, Châtenay-Malabry, Ecole centrale de Paris (2013). [Google Scholar]
  • M. Saidi-Mehrabad, M.M. Paydar and A. Aalaei, Production planning and worker training in dynamic manufacturing systems. J. Manuf. Syst. 32 (2013) 308–314. [Google Scholar]
  • H. Salehi, A.A. Taleizadeh, R. Tavakkoli-Moghaddam and A. Hafezalkotob, Pricing and market segmentation in an uncertain supply chain. SÂdhan 45 (2020) 118. [Google Scholar]
  • B. Sarkar, M. Omair and S.B. Choi, A multi-objective optimization of energy, economic, and carbon emission in a production model under sustainable supply chain management. App. Sci. 8 (2018) 1744. [Google Scholar]
  • B. Sarkar, M. Tayyab, N. Kim and M.S. Habib, Optimal production delivery policies for supplier and manufacturer in a constrained closed-loop supply chain for returnable transport packaging through metaheuristic approach. Comput. Ind. Eng. 135 (2019) 987–1003. [Google Scholar]
  • B. Sarkar, M. Omair and N. Kim, A cooperative advertising collaboration policy in supply chain management under uncertain conditions. Appl. Soft Comput. 88 (2020) 105948. [Google Scholar]
  • M.M. SeyedEsfahani, M. Biazaran and M. Gharakhani, A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer–retailer supply chains. Eur. J. Oper. Res. 211 (2011) 263–273. [Google Scholar]
  • J. Shi, G. Zhang and J. Sha, Jointly pricing and ordering for a multi-product multi-constraint newsvendor problem with supplier quantity discounts. Appl. Math. Model. 35 (2011) 3001–3011. [Google Scholar]
  • A.A. Taleizadeh and M. Noori-Daryan, Pricing, manufacturing and inventory policies for raw material in a three-level supply chain. Int. J. Syst. Sci. 47 (2016) 919–931. [Google Scholar]
  • A.A. Taleizadeh, M. Noori-Daryan and K. Govindan, Pricing and ordering decisions of two competing supply chains with different composite policies: a Stackelberg game-theoretic approach. Int. J. Prod. Res. 54 (2016) 2807–2836. [Google Scholar]
  • A.A. Taleizadeh, M.K. Mamaghan and S.A. Torabi, A possibilistic closed-loop supply chain: pricing, advertising and remanufacturing optimization. Neural Comput. App. 32 (2020) 1195–1215. [Google Scholar]
  • M. Tamiz, D. Jones and C. Romero, Goal programming for decision making: An overview of the current state-of-the-art. Eur. J. Oper. Res. 111 (1998) 569–581. [Google Scholar]
  • M. Tayyab, J. Jemai, H. Lim and B. Sarkar, A sustainable development framework for a cleaner multi-item multi-stage textile production system with a process improvement initiative. J. Cleaner Prod. 246 (2020) 119–155. [Google Scholar]
  • M. Ullah and B. Sarkar, Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality. Int. J. Prod. Econ. 219 (2020) 360–374. [Google Scholar]
  • R.M. Vanalle, W.C. Lucato, G.M.D. Ganga and A.G. Alves Filho, Risk management in the automotive supply chain: an exploratory study in Brazil. Int. J. Prod. Res. 58 (2020) 783–799. [Google Scholar]
  • X. Wen, T.M. Choi and S.H. Chung, Fashion retail supply chain management: A review of operational models. Int. J. Prod. Econ. 207 (2019) 34–55. [Google Scholar]
  • J. Xie and J.C. Wei, Coordinating advertising and pricing in a manufacturer–retailer channel. Eur. J. Oper. Res. 197 (2009) 785–791. [Google Scholar]
  • M. Yadollahinia, E. Teimoury and M.M. Paydar, Tire forward and reverse supply chain design considering customer relationship management. Res. Conserv. Recycl. 138 (2018) 215–228. [Google Scholar]
  • F. You, J.M. Wassick and I.E. Grossmann, Risk management for a global supply chain planning under uncertainty: models and algorithms. AIChE J. 55 (2009) 931–946. [Google Scholar]
  • F. Zabihi and M.K. Bafruei, Pricing and determining the optimal discount time of perishable goods with time and price dependent demand. RAIRO:OR 51 (2017) 509–518. [Google Scholar]
  • J.-L. Zhang, J. Chen and C.-Y. Lee, Joint optimization on pricing, promotion and inventory control with stochastic demand. Int. J. Prod. Econ. 116 (2008) 190–198. [Google Scholar]
  • Y. Zhang, F. Chu, A. Che, Y. Yu and X. Feng, Novel model and kernel search heuristic for multi-period closed-loop food supply chain planning with returnable transport items. Int. J. Prod. Res. 57 (2019) 7439–7456. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.