Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2543 - S2560
Published online 02 March 2021
  • P. Ahi and C. Searcy, A comparative literature analysis of definitions for green and sustainable supply chain management. J. Cleaner Prod. 52 (2013) 329–341. [Google Scholar]
  • P. Alvarez, I. Lerga, A. Serrano-Hernandez and J. Faulin, The impact of traffic congestion when optimising delivery routes in real time. A case study in spain. Int. J. Logistics Res. App. 21 (2018) 529–541. [Google Scholar]
  • A. Bastaş and K. Liyanage, Sustainable supply chain quality management: a systematic review. J. Cleaner Prod. 181 (2018) 726–744. [Google Scholar]
  • T. Bektaş and G. Laporte, The pollution-routing problem. Transp. Res. Part B Methodological 45 (2011) 1232–1250. [Google Scholar]
  • T. Bektaş, E. Demir, G. Laporte, Green vehicle routing. In: Vol. 226 of International Series in Operations Research & Management Science. Springer, Cham (2016) 243–265. [Google Scholar]
  • T. Bektaş, J.F. Ehmke, H.N. Psaraftis and J. Puchinger, The role of operational research in green freight transportation. Eur. J. Oper. Res. 274 (2019) 807–823. [Google Scholar]
  • R. Bellman, Dynamic programming treatment of the traveling salesman problem. J. ACM 9 (1962) 61–63. [Google Scholar]
  • P.G. Boulter, T.J. Barlow, I.S. McCrae, Emission factors 2009: report 3 – exhaust emission factors for road vehicles in the United Kingdom. Technical Report. Published project report PPR356 by TRL limited (2009). [Google Scholar]
  • M. Bravo, L.P. Rojas and V. Parada, An evolutionary algorithm for the multi-objective pick-up and delivery pollution-routing problem. Int. Trans. Oper. Res. 26 (2019) 302–317. [Google Scholar]
  • W.R. Cherif-Khettaf, M.H. Rachid, C. Bloch and P. Chatonnay, New notation and classification scheme for vehicle routing problems. RAIRO:OR 49 (2015) 161–194. [Google Scholar]
  • M. Çimen and M. Soysal, Time-dependent green vehicle routing problem with stochastic vehicle speeds: an approximate dynamic programming algorithm. Transp. Res. Part D: Transp. Environ. 54 (2017) 82–98. [Google Scholar]
  • L.C. Coelho, J. Renaud and G. Laporte, Road-based goods transportation: a survey of real-world logistics applications from 2000 to 2015. INFOR: Info. Syst. Oper. Res. 54, 2016 (2015) 79–96. [Google Scholar]
  • D. Coley, M. Howard and M. Winter, Local food, food miles and carbon emissions: a comparison of farm shop and mass distribution approaches. Food Policy 34 (2009) 150–155. [Google Scholar]
  • DEFRA, Guidelines to Defra’s GHG conversion factors for company reporting – Annexes updated June 2007. Technical Report. Department for Environment, Food and Rural Affairs (2007). [Google Scholar]
  • E. Demir, T. Bektaş and G. Laporte, A review of recent research on green road freight transportation. Eur. J. Oper. Res. 237 (2014) 775–793. [Google Scholar]
  • R. Dubey, A. Gunasekaran, T. Papadopoulos, S.J. Childe, K. Shibin and S.F. Wamba, Sustainable supply chain management: framework and further research directions. J. Cleaner Prod. 142 (2017) 1119–1130. [Google Scholar]
  • R. Eglese and T. Bektaş, Green vehicle routing. Veh. Routing: Prob. Methods App. 18 (2014) 437–458. [Google Scholar]
  • A. Franceschetti, D. Honhon, T. Van Woensel, T. Bektaş and G. Laporte, The time-dependent pollution-routing problem. Transp. Res. Part B: Methodological 56 (2013) 265–293. [Google Scholar]
  • A. Franceschetti, E. Demir, D. Honhon, T. Van Woensel, G. Laporte and M. Stobbe, A metaheuristic for the time-dependent pollution-routing problem. Eur. J. Oper. Res. 259 (2017) 972–991. [Google Scholar]
  • B. Funke, T. Grünert and S. Irnich, Local search for vehicle routing and scheduling problems: review and conceptual integration. J. Heuristics 11 (2005) 267–306. [Google Scholar]
  • M. Gajanand and T. Narendran, Green route planning to reduce the environmental impact of distribution. Int. J. Logistics Res. App. 16 (2013) 410–432. [Google Scholar]
  • M. Gan, X. Liu, S. Chen, Y. Yan and D. Li, The identification of truck-related greenhouse gas emissions and critical impact factors in an urban logistics network. J. Cleaner Prod. 178 (2018) 561–571. [Google Scholar]
  • A. Goel, Vehicle scheduling and routing with drivers’ working hours. Transp. Sci. 43 (2009) 17–26. [Google Scholar]
  • J. Gromicho, J.J. van Hoorn, A.L. Kok and J.M.J. Schutten, The flexibility of restricted dynamic programming for the VRP. Beta Working Pap. Ser. 266 (2008) 1–20. [Google Scholar]
  • J. Gromicho, J.J. van Hoorn, A.L. Kok and J.M.J. Schutten, Restricted dynamic programming: a flexible framework for solving realistic VRPs. Comput. Oper. Res. 39 (2012) 902–909. [Google Scholar]
  • M. Held and R.M. Karp, A dynamic programming approach to sequencing problems. J. SIAM 10 (1962) 196–210. [Google Scholar]
  • I. Kara, B. Kara and M. Yetis, Energy minimizing vehicle routing problem, edited by A. Dress, Y. Xu, B. Zhu. Vol. 4616 of Lecture Notes in Computer Science Combinatorial Optimization and Applications. Springer, Berlin-Heidelberg (2007) 62–71. [Google Scholar]
  • A.L. Kok, C.M. Meyer, H. Kopfer and J.M.J. Schutten, A dynamic programming heuristic for the vehicle routing problem with time windows and european community social legislation. Transp. Sci. 44 (2010) 442–454. [Google Scholar]
  • A.L. Kok, E.W. Hans and J.M.J. Schutten, Vehicle routing under time-dependent travel times: the impact of congestion avoidance. Comput. Oper. Res. 39 (2012) 910–918. [Google Scholar]
  • G. Laporte, H. Mercure and Y. Nobert, An exact algorithm for the asymmetrical capacitated vehicle-routing problem. NETWORKS 16 (1986) 33–46. [Google Scholar]
  • G. Laporte, F. Louveaux and L. van Hamme, An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. 50 (2002) 415–423. [Google Scholar]
  • C. Lin, K.L. Choy, G.T.S. Ho, S.H. Chung and H.Y. Lam, Survey of green vehicle routing problem: past and future trends. Expert Syst. App. 41 (2014) 1118–1138. [Google Scholar]
  • S. Majidi, S.M. Hosseini-Motlagh, S. Yaghoubi and A. Jokar, Fuzzy green vehicle routing problem with simultaneous pickup–delivery and time windows. RAIRO:OR 51 (2017) 1151–1176. [Google Scholar]
  • Y. Niu, Z. Yang, P. Chen and J. Xiao, Optimizing the green open vehicle routing problem with time windows by minimizing comprehensive routing cost. J. Cleaner Prod. 171 (2018) 962–971. [Google Scholar]
  • E. Pérez-Bernabeu, A.A. Juan, J. Faulin and B.B. Barrios, Horizontal cooperation in road transportation: a case illustrating savings in distances and greenhouse gas emissions. Int. Trans. Oper. Res. 22 (2015) 585–606. [Google Scholar]
  • K.N. Reddy, A. Kumar and E.E. Ballantyne, A three-phase heuristic approach for reverse logistics network design incorporating carbon footprint. Int. J. Prod. Res. 57 (2019) 6090–6114. [Google Scholar]
  • S. Rogerson, Influence of freight transport purchasing processes on logistical variables related to CO# emissions: a case study in Sweden. Int. J. Logistics Res. App. 20 (2017) 604–623. [Google Scholar]
  • M. Salehi, M. Jalalian and M.M.V. Siar, Green transportation scheduling with speed control: trade-off between total transportation cost and carbon emission. Comput. Ind. Eng. 113 (2017) 392–404. [Google Scholar]
  • I. Sbai, S. Krichen and O. Limam, Two meta-heuristics for solving the capacitated vehicle routing problem: the case of the tunisian post office. Oper. Res. 1–43 (2020). [Google Scholar]
  • M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35 (1987) 254–265. [Google Scholar]
  • M. Soysal, Decision support modeling for sustainable food logistics management, Ph.D. thesis. Wageningen University (2015). [Google Scholar]
  • M. Soysal and M. Çimen, A simulation based restricted dynamic programming approach for the green time dependent vehicle routing problem. Comput. Oper. Res. 88 (2017) 297–305. [Google Scholar]
  • M. Soysal, M. Çimen, S. Belbağ and E. Toğrul, A review on sustainable inventory routing. Comput. Ind. Eng. 132 (2019) 395–411. [Google Scholar]
  • M. Soysal, M. Çimen, M. Ömürgönülşen and S. Belbağ, Performance comparison of two recent heuristics for green time dependent vehicle routing problem. Int. J. Bus. Anal. (IJBAN) 6 (2019) 1–11. [Google Scholar]
  • F. Tao, T. Fan and K.K. Lai, Optimal inventory control policy and supply chain coordination problem with carbon footprint constraints. Int. Trans. Oper. Res. 25 (2018) 1831–1853. [Google Scholar]
  • S. Validi, A. Bhattacharya and P. Byrne, Integrated low-carbon distribution system for the demand side of a product distribution supply chain: a doe-guided MOPSO optimiser-based solution approach. Int. J. Prod. Res. 52 (2014) 3074–3096. [Google Scholar]
  • Y. Xiao, X. Zuo, J. Huang, A. Konak and Y. Xu, The continuous pollution routing problem. Appl. Math. Comput. 387 (2020) 125072. [Google Scholar]
  • L. Zhu and D. Hu, Study on the vehicle routing problem considering congestion and emission factors. Int. J. Prod. Res. 57 (2019) 6115–6129. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.