Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2561 - S2574
DOI https://doi.org/10.1051/ro/2020093
Published online 02 March 2021
  • M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey. Linear Algebra Appl. 458 (2014) 301–386. [Google Scholar]
  • A.T. Balaban, D. Ciubotariu and M. Medeleanu, Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors. J. Chem. Inf. Comput. Sci. 31 (1991) 517–523. [Google Scholar]
  • F. Bergeron, P. Leroux and G. Labelle, Combinatorial Species and Tree-like Structures. Cambridge University Press, Cambridge (1998). [Google Scholar]
  • S.S. Bose, M. Nath and S. Paul, Distance spectral radius of graphs with r pendent vertices. Linear Algebra Appl. 435 (2011) 2828–2836. [Google Scholar]
  • K. Dadedzi, V. Razanajatovo Misanantenaina and S. Wagner, On the distance spectral radius of trees with given degree sequence. Discuss. Math. Graph Theory 40 (2020) 495–524. [Google Scholar]
  • Z. Du, A. Ilić and L. Feng, Further results on the distance spectral radius of graphs. Linear Multilinear Algebra 61 (2013) 1287–1301. [Google Scholar]
  • T.H. Foregger, Identities related to permanents of doubly stochastic matrices and series reduces trees. Linear Multilinear Algebra 7 (1979) 37–41. [Google Scholar]
  • R.L. Graham and H.O. Pollak, On the addressing problem for loop switching. Bell Syst. Tech. J. 50 (1971) 2495–2519. [Google Scholar]
  • I. Gutman and M. Medeleanu, On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane. Indian J. Chem. A 37 (1998) 569–573. [Google Scholar]
  • J. Haslegrave, Extremal results on average subtree density of series-reduced trees. J. Combin. Theory Ser. B. 107 (2014) 26–41. [Google Scholar]
  • F. Harary and G. Prins, The number of homeomorphically irreducible trees, and other species. Acta Math. 101 (1959) 141–162. [Google Scholar]
  • A. Ilić, Distance spectral radius of trees with given matching number. Discrete Appl. Math. 158 (2010) 1799–1806. [Google Scholar]
  • Y. Liang and B. Zhou, On the distance spread of cacti and bicyclic graphs. Discrete Appl. Math. 206 (2016) 195–202. [Google Scholar]
  • H. Lin and B. Zhou, The distance spectral radius of graphs with given number of odd vertices. Electron. J. Linear Algebra 31 (2016) 286–305. [Google Scholar]
  • H. Lin and B. Zhou, The distance spectral radius of trees. Linear Multilinear Algebra 67 (2019) 370–390. [Google Scholar]
  • H. Lin and B. Zhou, Distance spectral radius of trees with given number of segments. Linear Algebra Appl. 600 (2020) 40–59. [Google Scholar]
  • W. Lin, Y. Zhang, Q. Chen, J. Chen, C. Ma and J. Chen, Ordering trees by their distance spectral radii. Discrete Appl. Math. 203 (2016) 106–110. [Google Scholar]
  • Z. Luo and B. Zhou, On distance spectral radius of trees and fixed maximum degree. Filomat 29 (2015) 2021–2026. [Google Scholar]
  • H. Minc, Nonnegative Martices. John Wiley & Sons, New York (1988). [Google Scholar]
  • M. Nath and S. Paul, On the distance spectral radius of trees. Linear Multilinear Algebra 61 (2013) 847–855. [Google Scholar]
  • W. Ning, L. Ouyang and M. Lu, Distance spectral radius of trees with fixed number of pendent vertices. Linear Algebra Appl. 439 (2013) 2240–2249. [Google Scholar]
  • Z. Peng and B. Zhou, Minimum status of trees with given parameters, RAIRO-Oper. Res. (2020). DOI: https://doi.org/10.1051/ro/2020015. [Google Scholar]
  • S.N. Ruzieh and D.L. Powers, The distance spectrum of the path Pn and the first distance eigenvector of connected graphs. Linear Multilinear Algebra 28 (1990) 75–81. [Google Scholar]
  • D. Stevanović and A. Ilić, Distance spectral radius of trees with fixed maximum degree. Electron. J. Linear Algebra 20 (2010) 168–179. [Google Scholar]
  • Y. Wang and B. Zhou, On distance spectral radius of graphs. Linear Algebra Appl. 438 (2013) 3490–3503. [Google Scholar]
  • Y. Wang, R. Xing, B. Zhou and F. Dong, A note on distance spectral radius of trees. Spec. Matrices 5 (2017) 296–300. [Google Scholar]
  • R. Xing, B. Zhou and F. Dong, The effect of a graft transformation on distance spectral radius. Linear Algebra Appl. 457 (2014) 261–275. [Google Scholar]
  • G. Yu, S. Guo and M. Zhai, Distance spectral radius of a tree with given diameter. Ars Combin. 134 (2017) 351–362. [Google Scholar]
  • B. Zhou and N. Trinajstić, On the largest eigenvalue of the distance matrix of a connected graph. Chem. Phys. Lett. 447 (2007) 384–387. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.