Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S1249 - S1259
Published online 02 March 2021
  • L.A. Basilio, S. Bermudo and J.M. Sigarreta, Bounds on the differential of a graph. Utilitas Math. 103 (2017) 319–334. [Google Scholar]
  • S. Bermudo, On the differential and Roman domination number of a graph with minimum degree two. Disc. Appl. Math. 232 (2017) 64–72. [Google Scholar]
  • S. Bermudo and H. Fernau, Lower bounds on the differential of a graph. Disc. Math. 312 (2012) 3236–3250. [Google Scholar]
  • S. Bermudo and H. Fernau, Computing the differential of a graph: hardness, approximability and exact algorithms. Disc. Appl. Math. 165 (2014) 69–82. [Google Scholar]
  • S. Bermudo and H. Fernau, Combinatorics for smaller kernels: the differential of a graph. Theor. Comput. Sci. 562 (2015) 330–345. [Google Scholar]
  • S. Bermudo, H. Fernau and J.M. Sigarreta, The differential and the Roman domination number of a graph. Appl. Anal. Disc. Math. 8 (2014) 155–171. [Google Scholar]
  • S. Bermudo, J.C. Hernández-Gómez, J.M. Rodríguez and J.M. Sigarreta, Relations between the differential and parameters in graphs. Electron. Notes Disc. Math. 46 (2014) 281–288. [Google Scholar]
  • S. Bermudo, L. De la Torre, A.M. Martín-Caraballo and J.M. Sigarreta, The differential of the strong product graphs. Int. J. Comput. Math. 92 (2015) 1124–1134. [Google Scholar]
  • S. Bermudo, J.M. Rodríguez and J.M. Sigarreta, On the differential in graphs. Utilitas Math. 97 (2015) 257–270. [Google Scholar]
  • T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 3rd edition. The MIT Press, Cambridge, MA (2009). [Google Scholar]
  • M. Cygan, M. Pilipczuk and R. Škrekovski, Relation between Randić index and average distance of trees. MATCH Commun. Math. Comput. Chem. 66 (2011) 605–612. [Google Scholar]
  • J.A. Gallian, A dynamic survey of graph labeling. Electron. J. Comb. 15 (2008) DS6. [Google Scholar]
  • J.H. Hattingh and E. Ungerer, The signed and minus k-subdomination numbers of comets. Disc. Math. 183 (1998) 141–152. [Google Scholar]
  • J.C. Hernández-Gómez, Differential and operations on graphs. Int. J. Math. Anal. 9 (2015) 341–349. [Google Scholar]
  • I. Javaid and S. Shokat, On the partition dimension of some wheel related graphs. J. Prime Res. Math. 4 (2008) 154–164. [Google Scholar]
  • J.R. Lewis, Differentials of graphs, Master’s thesis. East Tennessee State University, Johnson City, TN (2004). [Google Scholar]
  • J.L. Mashburn, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, Differentials in graphs. Utilitas Math. 69 (2006) 43–54. [Google Scholar]
  • M.J. Morgan, S. Mukwembi and H.C. Swart, On the eccentric connectivity index of a graph. Disc. Math. 311 (2011) 1229–1234. [Google Scholar]
  • P.R.L. Pushpam and D. Yokesh, Differential in certain classes of graphs. Tamkang J. Math. 41 (2010) 129–138. [Google Scholar]
  • J.M. Sigarreta, Differential in cartesian product graphs. Ars Comb. CXXVI (2016) 259–267. [Google Scholar]
  • D.B. West, Introduction to Graph Theory. Prentice Hall, NJ (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.