Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2417 - S2431
Published online 02 March 2021
  • C. Byrne, Iterative projection onto convex sets using multiple Bregman distances. Inverse Probl. 15 (1999) 1295–1313. [Google Scholar]
  • C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20 (2004) 103–120. [Google Scholar]
  • C. Byrne, The split common null point problem. J. Nonlinear Convex Anal. 13 (2014) 759–775. [Google Scholar]
  • V. Barbu, Maximal Monotone Operators in Banach Spaces. In: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York, NY (2011). [Google Scholar]
  • A. Cegielski, Generalized relaxations of nonexpansive operators and convex feasibility problems. Contemp. Math. 513 (2010) 111–123. [Google Scholar]
  • L.C. Ceng, Q.H. Ansari and C.F. Wen, An extragradient method for solving split feasibility and fixed point problems. Comput. Math. Appl. 64 (2012) 633–642. [Google Scholar]
  • L.C. Ceng, M.M. Wong, A. Petrusel and J.C. Yao, Relaxed implicit extragradient-like methods for finding minimum-norm solutions of the split feasibility problem. Fixed Point Theory 14 (2013) 327–344. [Google Scholar]
  • Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 8 (1994) 221–239. [Google Scholar]
  • Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21 (2005) 2071–2084. [Google Scholar]
  • Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem. Numer. Algorithms 59 (2012) 301–323. [Google Scholar]
  • J.Z. Chen, H.Y. Hu and L.C. Ceng, Strong convergence of hybrid Bregman projection algorithm for split feasibility and fixed point problems in Banach spaces. J. Nonlinear Sci. Appl. 10 (2017) 192–204. [Google Scholar]
  • M. Eslamian and P. Eslamian, Strong convergence of split common fixed point problem. Numer. Funct. Anal. Optim. 37 (2016) 1248–1266. [Google Scholar]
  • A.R. Khan, M. Abbas and Y. Shehu, A general convergence theorem for multiple-set split feasibility problem in Hilbert spaces. Carpathian J. Math. 31 (2015) 349–357. [Google Scholar]
  • B.M. Lawan and A. Kılıçman, Strong convergence for the split common fixed-point problem for total quasi-asymptotically nonexpansive mappings in Hilbert space. Abstr. Appl. Anal. 2015 (2015) 1–7. [Google Scholar]
  • A. Moudafi, Split monotone variational inclusions. J. Optim. Theory Appl. 150 (2011) 275–283. [Google Scholar]
  • A. Moudafi, The split common fixed-point problem for demicontractive mappings. Inverse Probl. 26 (2010) 1–6. [Google Scholar]
  • K. Nakajo and W. Takahashi, Strong convergence theorem for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279 (2003) 372–379. [Google Scholar]
  • S. Reich and S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73 (2010) 122–135. [Google Scholar]
  • F. Schöpfer, Iterative regularization methods for the solution of the split feasibility problem in Banach spaces. Ph.D. Thesis, Universitat des Saarlandes (2007). [Google Scholar]
  • F. Schöpfer, T. Schuster and A.K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Probl. 24 (2008) 055008. [Google Scholar]
  • W. Takahashi, The split common null point problem in Banach spaces. Arch. Math. (Basel) 104 (2015) 357–365. [Google Scholar]
  • W. Takahashi, Split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 15 (2014) 1349–1355. [Google Scholar]
  • F.H. Wang, A new algorithm for solving multiple-sets split feasibility problem in Banach spaces. Numer. Funct. Anal. Optim. 35 (2014) 99–110. [Google Scholar]
  • H.K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type. Nonlinear Anal. 16 (1991) 1139–1146. [Google Scholar]
  • H.K. Xu, A variable Krasnoselskii-Mann algorithm and the multiple set split feasibility problem. Inverse Probl. 22 (2006) 2021–2034. [Google Scholar]
  • H.K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26 (2010) 105018. [Google Scholar]
  • Z.-B. Xu and G.F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth banach spaces. J. Math. Anal. App. 157 (1991) 189–210. [Google Scholar]
  • Y.H. Yao, G. Marino and L. Muglia, A Korpelevich’s method convergent to the minimum-norm solutions of a variational inequality. Optimization 63 (2012) 559–562. [Google Scholar]
  • X.F. Zhang, L. Wang, L.M. Zhao and L.J. Qin, The strong convergence theorems for split common fixed point problem of asymptotically nonexpansive mappings in Hilbert spaces. J.Ineq. Appl. 2015 (2015) 1–11. [Google Scholar]
  • J. Zhao and Q. Yang, Several solution methods for the split feasibility problem. Inverse Probl. 21 (2005) 1791–1800. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.