Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2383 - S2392
Published online 02 March 2021
  • M. Babul Hasan and S. Acharjee, Solving LFP by converting it into a single LP. Int. J. Oper. Res. 8 (2011) 1–14. [Google Scholar]
  • E.B. Bajalinov, Linear-Fractional Programming Theory, Methods, Applications and Software. Kluwer Academic Publishers, Boston, MA (2003). [Google Scholar]
  • G.R. Bitrand and A.J. Novas, Linear programming with a fractional objective function. J. Oper. Res. 21 (1973) 22–29. [Google Scholar]
  • A. Cambini and L. Martein, A modified version of Martos’s algorithm for the linear fractional problem. Methods Oper. Res. 53 (1986) 33–44. [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear functional. Nav. Res. Logist. Q. 9 (1962) 181–186. [Google Scholar]
  • W. Dinkelbach, On nonlinear fractional programming. Manage. Sci. 13 (1967) 492–498. [Google Scholar]
  • P.C. Gimore and R.E. Gomory, Linear programming approach to the cutting stock problem-part 2. Oper. Res. 11 (1963) 863–867. [Google Scholar]
  • H. Grar and D. Benterki, New effective projection method for variational inequalities problem. RAIRO: OR 49 (2015) 805–820. [Google Scholar]
  • J.R. Isbell and W.H. Marlow, Attrition games. Nav. Res. Logist. Q. 3 (1956) 1–99. [Google Scholar]
  • I.J. Lustig, A practical approach to Karmarkar’s algorithm, Technical report sol 85-5 System optimization laboratory; Department of Operations Research Stanford. University of Stanford, CA (1985). [Google Scholar]
  • I.J. Lustig, Feasibility issues in a primal-dual interior point method for linear programming. Math. Program. 49 (1991) 145–162. [Google Scholar]
  • B. Martos, Hyperbolic programming. Nav. Res. Logist. Q. 11 (1964) 135–155. [Google Scholar]
  • A. Nagih and G. Plateau, Problèmes fractionnaires: tour d’horizon sur les applications et méthodes de résolution. RAIRO: OR 33 (1999) 383–419. [Google Scholar]
  • S.K. Saha, M.R. Hossain, M.K. Uddin and R.N. Mondal, A new approach of solving linear fractional programming problem (LFP) by using computer algorithm. Open J. Optim. 4 (2015) 74–86. [Google Scholar]
  • J.K. Sharma, A.K. Gupta and M.P. Gupta, Extension of simplex technic for solving programming problems. Indian J. Pure Appl. Math. 11 (1980) 961–968. [Google Scholar]
  • K. Swarup, Linear fractional functional programming. Oper. Res. 110 (1962) 380–387. [Google Scholar]
  • K. Swarup, Linear fractional functional programming. Oper. Res. 13 (1965) 1029–1036. [Google Scholar]
  • O. Zerdani, L’optimisation non linéaire multiobjectif, Thèse de doctorat, Université Mouloud Mammeri, Tizi-Ouzou (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.