Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2373 - S2381
DOI https://doi.org/10.1051/ro/2020088
Published online 02 March 2021
  • I.P. Androulakis, C.D. Marinas and C.A. Floudas, BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7 (1995) 337–363. [Google Scholar]
  • C.A. Floudas and C.E. Gounaris, A review of recent advances in global optimization. J. Glob. Optim. 45 (3) (2009) DOI: 10.1007/s10898-008-9332-8. [Google Scholar]
  • E. Gourdin, B. Jaumard and R. Ellaia, Global optimization of Hölder functions. J. Glob. Optim. 8 (1996) 323–348. [Google Scholar]
  • E.M.T. Hendrix, J.M.G. Salmeron and L.G. Casado, On function monotonicity in simplicial branch and bound. AIP Conf. Proc. 2070 (2019) 020007. [Google Scholar]
  • M. Hladık and D. Daney, Computing the range of real eigenvalues of an interval matrix. SWIM 08, Montpellier, France, June 19-20, (2008). [Google Scholar]
  • S. Karhbet and R.B. Kearfott, Range bounds of functions over simplices, for branch and bound algorithms. Reliable Comput. 25, (2017) 53–73. [Google Scholar]
  • N. Kazazakis and C.S. Adjiman, Arbitrarily tight BB underestimators of general non-linear functions over sub-optimal domains. J. Glob. Optim. 71 (2018) 815–844. [Google Scholar]
  • D. Nerantzis and C.S. Adjiman, Tighter BB relaxations through a refinement scheme for the scaled Gerschgorin theorem. J. Glob. Optim. 73 (2019) 467–483. [Google Scholar]
  • M. Ouanes, M. Chebbah and A. Zidna, Combination of two underestimators for univariate global optimization. RAIRO:OR 52 (2018) 177–186. [Google Scholar]
  • R. Paulavicius and J. Zilinskas, Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59 (2014) 23–40. [Google Scholar]
  • R. Paulavicius and J. Zilinskas, Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10 (2014) 1–10. [Google Scholar]
  • R. Paulavicius, Y.D. Sergeyev, D.E. Kvasov and J. Zilinskas, Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59 (2014) 545–567. [Google Scholar]
  • D.G. Sotiropoulos and T.N. Grapsa, Optimal centers in branch-and-prune algorithms for univariate global optimization. Appl. Math. Comput. 169 (2005) 247–277. [Google Scholar]
  • X. Wang and T.S. Chang, An improved univariate global optimization algorithm with improved linear lower bounding functions. J. Glob. Optim. 8 (1996) 393–411. [Google Scholar]
  • Y. Zhu and T. Kuno, A global optimization method, QBB, for twice-differentiable nonconvex optimization problem. J. Glob. Optim. 33 (2005) 435–464. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.