Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2999 - S3008
Published online 02 March 2021
  • T. Amahroq, J.-P. Penot and A. Syam, On the subdifferentiability of difference of two functions and local minimization. Set Valued Anal. 16 (2008) 413–427. [Google Scholar]
  • J.M. Borwein and Q.J. Zhu, Techniques of Variational Analysis. Springer-Verlag (2005). [Google Scholar]
  • R.I. Bot and D.-M. Nechita, On the Dini-Hadamard subdifferential of the difference of two functions. J. Global Optim. 50 (2011) 485–502. [Google Scholar]
  • Z. Chen, Asymptotic analysis for proximal-type methods in vector variational inequality problems. Oper. Res. Lett. 43 (2015) 226–230. [Google Scholar]
  • B.D. Craven, Invex function and constrained local minima. Bull. Aust. Math. Soc. 24 (1981) 357–366. [Google Scholar]
  • A. Daniilidis and P. Georgiev, Approximate convexity and submonotonicity. J. Math. Anal. App. 291 (2004) 292–301. [Google Scholar]
  • F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003). [Google Scholar]
  • M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarity problems. SIAM Rev. 39 (1997) 669–713. [Google Scholar]
  • F.F. Guo, L.W. Zhang and Y.H. Ren, Error bounds for affine variational inequalities with second-order cone constraints. Oper. Res. Lett. 45 (2017) 456–460. [Google Scholar]
  • A. Gupta, A. Mehra and D. Bhatia, Approximate convexity in vector optimization. Bull. Aust. Math. Soc. 74 (2006) 207–218. [Google Scholar]
  • C. Gutiérrez, B. Jiménez, V. Novo and G. Ruiz-Garzón, Vector critical points and efficiency in vector optimization with Lipschitz functions. Optim. Lett. 10 (2016) 47–62. [Google Scholar]
  • M.A. Hanson, On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. App. 80 (1981) 545–550. [Google Scholar]
  • V.I. Ivanov, Second-order invex functions in nonlinear programming. Optimization 61 (2012) 489–503. [Google Scholar]
  • Y. Jiang, X. Cai and D. Han, Solving policy design problems: alternating direction method of multipliers-based methods for structured inverse variational inequalities. Eur. J. Oper. Res. 280 (2020) 417–427. [Google Scholar]
  • A. Jofre, D.T. Luc and M. Thera, ɛ-subdifferential and ɛ-monotonicity. Nonlinear Anal. 33 (1998) 71–90. [Google Scholar]
  • P. Loridan, ɛ-in vector minimization problems. J. Optim. Theory App. 43 (1984) 265–276. [Google Scholar]
  • S.K. Mishra and G. Giorgi, Invexity and Optimization. In: Vol. 88 of Nonconvex Optimization and Its Applications. Springer, Berlin (2008). [CrossRef] [Google Scholar]
  • S.K. Mishra and V. Laha, On approximately star-shaped functions and approximate vector variational inequalities. J. Optim. Theory App. 156 (2012) 278–293. [Google Scholar]
  • S.K. Mishra and V. Laha, On minty variational principle for nonsmooth vector optimization problems with approximate convexity. Optim. Lett. 10 (2016) 577–589. [Google Scholar]
  • S.K. Mishra and B.B. Upadhyay, Some relations between vector variational inequality problems and nonsmooth vector optimization problems using quasi efficiency. Positivity 17 (2013) 1071–1083. [Google Scholar]
  • S. Mititelu, Invex sets. Stud. Cerc. Mat. 46 (1994) 529–532. [Google Scholar]
  • H.V. Ngai and J.-P. Penot, Approximately convex functions and approximately monotonic operators. Nonlinear Anal. 66 (2007) 547–564. [Google Scholar]
  • H.V. Ngai and J.-P. Penot, Semismoothness and directional subconvexity of functions. Pac. J. Optim. 3 (2007) 323–344. [Google Scholar]
  • H.V. Ngai, D.T. Luc and M. Thera, Approximate convex functions. J. Nonlinear Convex Anal. 1 (2000) 155–176. [Google Scholar]
  • R. Osuna-Gómez, A. Rufián-Lizana and P. Ruiz-Canales, Invex functions and generalized convexity in multiobjective programming. J. Optim. Theory App. 98 (1998) 651–661. [Google Scholar]
  • J.-P. Penot, The directional subdifferential of the difference of two convex functions. J. Global Optim. 49 (2011) 505–519. [Google Scholar]
  • G.J. Tang, M. Zhu and H.W. Liu, A new extragradient-type method for mixed variational inequalities. Oper. Res. Lett. 43 (2015) 567–572. [Google Scholar]
  • Z. Wang, R. Li and G. Yu, Vector critical points and generalized quasi-efficient solutions in nonsmooth multi-objective programming. J. Inequal. App. (2017) 1–12. [Google Scholar]
  • D.J. White, Epsilon efficiency. J. Optim. Theory App. 49 (1986) 319–337. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.