Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2983 - S2997
Published online 02 March 2021
  • L. Bian, Z. Li and H. Yao, Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause. Insur. Math. Econ. 81 (2018) 78–94. [Google Scholar]
  • T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems. Available at SSRN 1694759 (2010). [Google Scholar]
  • T. Björk, A. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion. Math. Financ. 24 (2014) 1–24. [Google Scholar]
  • N. Branger and L.S. Larsen, Robust portfolio choice with uncertainty about jump and diffusion risk. J. Bank. Financ. 37 (2013) 5036–5047. [Google Scholar]
  • A.J.G. Cairns, D. Blake and K. Dowd, Stochastic lifestyling: optimal dynamic asset allocation for defined-contribution pension plans. J. Econ. Dyn. Control. 30 (2006) 843–877. [Google Scholar]
  • Z. Chen, Z. Li, Y. Zeng and J. Sun, Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk. Insur. Math. Econ. 75 (2017) 137–150. [Google Scholar]
  • G. Deelstra, M. Grasselli and P.F. Koehl, Optimal design of the guarantee for defined contribution funds. J. Econ. Dyn. Control. 28 (2004) 2239–2260. [Google Scholar]
  • J. Gao, Optimal portfolio for DC pension plans under a CEV model. Insur. Math. Econ. 44 (2009) 479–490. [Google Scholar]
  • J. Gao, Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model. Insur. Math. Econ. 45 (2009) 9–18. [Google Scholar]
  • P. Ghirardato, P. Klibanoff and M. Marinacci, Additivity with multiple priors. J. Math. Econ. 30 (1998) 405–420. [Google Scholar]
  • P. Ghirardato, F. Maccheroni and M. Marinacci, Differentiating ambiguity and ambiguity attitude. J. Econ. Theor. 118 (2004) 133–173. [Google Scholar]
  • M. Giacinto, F. Gozzi and S. Federico, Pension funds with a minimum guarantee: a stochastic control approach. Financ. Stoch. 15 (2011) 297–342. [Google Scholar]
  • G. Guan and Z. Liang, Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework. Insur. Math. Econ. 57 (2014) 58–66. [Google Scholar]
  • G. Guan and Z. Liang, Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints. Insur. Math. Econ. 69 (2016) 224–237. [Google Scholar]
  • N.W. Han and M.W. Hung, Optimal asset allocation for DC pension plans under inflation. Insur. Math. Econ. 51 (2012) 172–181. [Google Scholar]
  • L. He and Z. Liang, Optimal investment strategy for the DC plan with the return of premiums clauses in a mean-variance framework. Insur. Math. Econ. 53 (2013) 643–649. [Google Scholar]
  • L. He and Z. Liang, Optimal dynamic asset allocation strategy for ELA scheme of DC pension plan during the distribution phase. Insur. Math. Econ. 52 (2013) 404–410. [Google Scholar]
  • Z. Kang, X. Li, Z. Li and S. Zhu, Data-driven robust mean-CVaR portfolio selection under distribution ambiguity. Quant. Financ. 19 (2019) 105–121. [Google Scholar]
  • P. Klibanoff, M. Marinacci and S. Mukerji, A smooth model of decision making under ambiguity. Econometrica 73 (2005) 1849–1892. [Google Scholar]
  • P. Klibanoff, M. Marinacci and S. Mukerji, Recursive smooth ambiguity preferences. J. Econ. Theor. 144 (2009) 930–976. [Google Scholar]
  • P.H. Kohler and I. Kohler, Frailty modeling for adult and old age mortality: the application of a modified De Moivre Hazard function to sex differentials in mortality. Demograph. Res. 3 (2000) 8. [Google Scholar]
  • B. Li, D. Li and D. Xiong, Alpha-robust mean-variance reinsurance-investment strategy. J. Econ. Dyn. Control. 70 (2016) 101–123. [Google Scholar]
  • D. Li, X. Rong, H. Zhao and B. Yi, Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model. Insur. Math. Econ. 72 (2017) 6–20. [Google Scholar]
  • M. Marinacci, Probabilistic sophistication and multiple priors. Econometrica 70 (2002) 755–764. [Google Scholar]
  • B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd edition. Springer, Berlin-Heidelberg (2007). [Google Scholar]
  • J. Sun, Z. Li and Y. Zeng, Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model. Insur. Math. Econ. 67 (2016) 158–172. [Google Scholar]
  • J. Sun, Y. Li and L. Zhang, Robust portfolio choice for a defined contribution pension plan with stochastic income and interest rate. Commun. Stat-Theor. M. 47 (2018) 4106–4130. [Google Scholar]
  • P. Wang and Z. Li, Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility. Insur. Math. Econ. 80 (2018) 67–83. [Google Scholar]
  • H. Wu and Y. Zeng, Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk. Insur. Math. Econ. 64 (2015) 396–408. [Google Scholar]
  • J. Xiao, Z. Hong and C. Qin, The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts. Insur. Math. Econ. 40 (2007) 302–310. [Google Scholar]
  • Y. Zeng, D. Li, Z. Chen and Z. Yang, Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility. J. Econ. Dyn. Control 88 (2018) 70–103. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.