Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2759 - S2771
Published online 02 March 2021
  • A.D. Al-Naseer, L ranked set sampling: a generalized procedure for robust visual sampling. Commun. Stat.-Simul. Comput. 36 (2007) 33–43. [Google Scholar]
  • A.D. Al-Nasser and A.I. Al-Omari, Minimax ranked set sampling. Rev. Invest. Oper. 39 (2018) 560–570. [Google Scholar]
  • A.D. Al-Nasser, E. Ciavolino and A.I. Al-Omari, Extreme ranked repetitive sampling control charts. Pesquisa Oper. 40 (2020) 1–16. [Google Scholar]
  • A.I. Al-Omari, Estimation of mean based on modified robust extreme ranked set sampling. J. Stat. Comput. Simul. 81 (2011) 1055–1066. [Google Scholar]
  • A.I. Al-Omari and A.D. Al-Nasser, Ratio estimation using multistage median ranked set sampling approach. J. Stat. Theory Pract. 12 (2018) 512–529. [Google Scholar]
  • A.I. Al-Omari and M.Z. Raqab, Estimation of the population mean and median using truncation-based ranked set samples. J. Stat. Comput. Simul. 83 (2013) 1453–1471. [Google Scholar]
  • A.I. Al-Omari and E. Zamanzade, Goodness of fit tests for logistic distribution based on phi-divergence. Electron. J. Appl. Stat. Anal. 11 (2018) 185–195. [Google Scholar]
  • A.I. Al-Omari, I.M. Almanjahie, A.S. Hassan and H.F. Nagy, Estimation of the stress-strength reliability for exponentiated pareto distribution using median and ranked set sampling methods. Comput. Mater. Continua 64 (2020) 835–857. [Google Scholar]
  • S. Balci, A.D. Akkaya and B.E. Ulgen, Modified maximum likelihood estimators using ranked set sampling. J. Comput. Appl. Math. 238 (2013) 171–179. [Google Scholar]
  • W. Chen, M. Xie and M. Wu, Parametric estimation for the scale parameter for scale distributions using moving extremes ranked set sampling. Stat. Probab. Lett. 83 (2013) 2060–2066. [Google Scholar]
  • T.R. Dell and J.L. Clutter, Ranked set sampling theory with order statistics background. Biometrics 28 (1972) 545–555. [Google Scholar]
  • A. Haq and A.I. Al-Omari, A new shewhart control chart for monitoring process mean based on partially ordered judgment subset sampling. Qual. Quantity 49 (2015) 1185–1202. [Google Scholar]
  • A. Haq, J. Brown, E. Moltchanova and A.I. Al-Omari, Partial ranked set sampling design. Environmetrics 24 (2013) 201–207. [Google Scholar]
  • A. Haq, J. Brown, E. Moltchanova and A.I. Al-Omari, Mixed ranked set sampling design. J. Appl. Stat. 41 (2014) 2141–2156. [Google Scholar]
  • A. Haq, J. Brown, E. Moltchanova and A.I. Al-Omari, Varied L ranked set sampling scheme. J. Stat. Theory Pract. 9 (2015) 741–767. [Google Scholar]
  • A. Haq, J. Brown, E. Moltchanova and A.I. Al-Omari, Paired double ranked set sampling. Commun. Stat.-Theory Methods 45 (2016) 2873–2889. [Google Scholar]
  • A.A. Jemain, A.I. Al-Omari and K. Ibrahim, Multistage extreme ranked set samples for estimating the population mean. J. Stat. Theory App. 6 (2007) 456–471. [Google Scholar]
  • A.A. Jemain, A.I. Al-Omari and K. Ibrahim, Multistage median ranked set sampling for estimating the population median. J. Math. Stat. 3 (2007) 58–64. [Google Scholar]
  • G.A. McIntyre, A method for unbiased selective sampling, using ranked sets. Aust. J. Agr. Res. 3 (1952) 385–390. [Google Scholar]
  • H.A. Muttlak, Median ranked set sampling. J. Appl. Stat. Sci. 6 (1997) 245–255. [Google Scholar]
  • Y. Rui, H. Wangxue and Y. Dongsen, The efficiency of ranked set sampling design for parameter estimation for the log-extended exponential-geometric distribution. Iran. J. Sci. Technol. Trans. A: Sci. 44 (2020) 497–507. [Google Scholar]
  • H.M. Samawi, M.S. Ahmed and W. Abu-Dayyeh, Estimating the population mean using extreme ranked set sampling. Biometrical J. 38 (1996) 577–586. [Google Scholar]
  • M.H. Samuh, A.I. Al-Omari and N. Koyuncu, Estimation of the parameters of the new weibull-pareto distribution using ranked set sampling. Statistica 80 (2020) 103–123. [Google Scholar]
  • L. Stokes, Parametric ranked set sampling. Ann. Inst. Stat. Math. 47 (1995) 465–482. [Google Scholar]
  • K. Takahasi and K. Wakimoto, On unbiased estimates of the population mean based on the sample stratified by means of ordering. Ann. Inst. Stat. Math. 20 (1968) 1–31. [Google Scholar]
  • E. Zamanzade and A.I. Al-Omari, New ranked set sampling for estimating the population man and variance. Hacettepe J. Math. Stat. 45 (2016) 1891–1905. [Google Scholar]
  • E. Zamanzade and M. Mahdizadeh, Using ranked set sampling with extreme ranks in estimating the population proportion. Stat. Methods Med. Res. 29 (2020) 165–177. [PubMed] [Google Scholar]
  • G. Zheng and M.F. Al-Saleh, Modified maximum likelihood estimators based on ranked set samples. Ann. Inst. Stat. Math. 54 (2002) 641–658. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.