Issue
RAIRO-Oper. Res.
Volume 55, Number 1, January-February 2021
Decision and Optimization in Service, Control and Engineering (CoDIT2019-DOSCE)
Page(s) 51 - 60
DOI https://doi.org/10.1051/ro/2020059
Published online 03 March 2021
  • A. Amindoust, Supplier selection considering sustainability measures: an application of weight restriction fuzzy-DEA approach. RAIRO:OR 52 (2018) 981–1001. [Google Scholar]
  • H. Amoozad Mahdiraji, E. Kazimieras Zavadskas, A. Kazeminia, A.A. Abbasi Kamardi, Marketing strategies evaluation based on big data analysis: a CLUSTERING-MCDM approach. Econ. Res. 32 (2019) 2882–2898. [Google Scholar]
  • S. Cinar, Sustainable reverse logistic network design for End-of-Life Use-Case Study. To appear in:RAIRO: OR (2019). DOI: 10.1051/ro/2019069. [Google Scholar]
  • E. Domnguez and J. Muñoz, A neural model for the p-median problem. Comput. Oper. Res. 35 (2008) 404–416. [Google Scholar]
  • R. Farzipoor Saen, Using cluster analysis and DEA-discriminant analysis to predict group membership of new customers. Int. J. Bus. Exc. 6 (2013) 348–360. [Google Scholar]
  • B. Fritzke, A growing neural gas network learns topologies. In: Proceedings of the 7th International Conference on Neural Information Processing Systems. Denver, CO (1995) 625–632. [Google Scholar]
  • M. Ghesmoune, M. Lebbah and H. Azzag, A new growing neural gas for clustering data streams. Neural Networks 78 (2016) 36–50. [Google Scholar]
  • K. Ghoseiri and S.F. Ghannadpour, Solving capacitated p-median problem using genetic algorithm. In: IEEE International Conference on Industrial Engineering and Engineering Management (2007) 885–889. [Google Scholar]
  • N.U. Hadi, N. Aslam and A. Gulzar, Sustainable service quality and customer loyalty: the role of customer satisfaction and switching costs in the Pakistan cellphone industry. Sustainability 11 (2019) 1–17. [Google Scholar]
  • A. Halog and N.H. Nguyen, A. Halog and N.H. Nguyen, Evaluating supply chain networks by incorporating the triple dimensions of sustainability paradigm, chapter 8. In: Implementing Triple Bottom Line Sustainability into Global Supply Chains, edited by L. Bals, W. Tate. Greenleaf Publishing in Association with GSE Research. Taylor & Francis, London (2017) 165–186. [Google Scholar]
  • A. Ibiwoye, E. Ajibola and A.B. Sogunro, Artificial neural network model for predicting insurance insolvency. Int. J. Manage. Bus. Res. 2 (2012) 59–68. [Google Scholar]
  • R. Krakovsky and R. Forgac, Neural network approach to multidimensional data classification via clustering. In: IEEE 9th International Symposium on Intelligent Systems and Informatics (2011) 169–174. [Google Scholar]
  • A. Kumar, V. Jain and S.A. Kumar, A comprehensive environment friendly approach for supplier selection. Omega 42 (2014) 109–123. [Google Scholar]
  • R.J. Kuo, Y.C. Wang and F.C. Tien, Integration of artificial neural network and MADA methods for green supplier selection. J. Clean. Prod. 18 (2010) 1161–1170. [Google Scholar]
  • Y. Li, R.J.S. Beeton, T. Sigler and A. Halog, Enhancing the adaptive capacity for urban sustainability: a bottom-up approach to understanding the urban social system in China. J. Environ. Manage. 235 (2019) 51–61. [Google Scholar]
  • T. Lu and A. Halog, Towards better life cycle assessment and circular economy: on recent studies on interrelationships among environmental sustainability, food systems and diet. Int. J. Sustainable Dev. World Ecol. 27 (2020) 515–523. [Google Scholar]
  • P. Lu and M.S. Rosenbaum, Artificial neural network and grey system for the prediction of slope stability. Nat. Hazards 30 (2003) 383–398. [Google Scholar]
  • L.Q. Luu and A. Halog, Life cycle sustainability assessment: a holistic evaluation of social, economic, and environmental impacts, chapter 14. In: Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Process, edited by G. Ruiz-Mercado, H. Cabezas. Elsevier, Butterworth-Heinemann, Oxford, MA (2016) 327–352. [Google Scholar]
  • C. Melchiorre, M. Matteucci, A. Azzoni and A. Zanchi, Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94 (2008) 379–400. [Google Scholar]
  • D.H. Milone, G. Stegmayer, L. Kamenetzky, M. López and F. Carrari, Clustering biological data with SOMs: on topology preservation in non-linear dimensional reduction. Expert Syst. App. 40 (2013) 3841–3845. [Google Scholar]
  • M.J.N. Negreiros and A.W.C. Palhano, The capacitated centered clustering problem. Comput. Oper. Res. 33 (2006) 1639–1663. [Google Scholar]
  • R.S. Novin, M.T. Masouleh and M. Yazdani, A new neural gas network approach for obtaining the singularity-free workspace of 3-DOF planar parallel manipulators. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 232 (2016) 174–189. [Google Scholar]
  • H. Shabanpour, S. Yousefi and R. Farzipoor Saen, Forecasting efficiency of green suppliers by dynamic data envelopment analysis and artificial neural networks. J. Clean. Prod. 142 (2017) 1098–1107. [Google Scholar]
  • H. Shabanpour, A. Fathi, S. Yousefi and R. Farzipoor Saen, Ranking sustainable suppliers using congestion approach of economies of scale theory of data envelopment analysis. J. Clean. Prod. 240 (2019) 118190. [Google Scholar]
  • H. Shamsipoor, M.A. Sandidzadeh and M. Yaghini, Solving capacitated p-median problem by a new structure of neural network. Int. J. Ind. Eng. 19 (2012) 305–319. [Google Scholar]
  • M. Tavana, H. Shabanpour, S. Yousefi and R. Farzipoor Saen, A hybrid goal programming and dynamic data envelopment analysis framework for sustainable supplier evaluation. Neural Comput. App. 28 (2016) 3683–3696. [Google Scholar]
  • C.T. Ting, C.M. Hsieh, H.P. Chang and H.S. Chen, Environmental consciousness and green customer behavior: the moderating roles of incentive mechanisms. Sustainability 11 (2019) 819. [Google Scholar]
  • S. Yousefi, H. Shabanpour, R. Fisher and R. Farzipoor Saen, Evaluating and ranking sustainable suppliers by robust dynamic data envelopment analysis. Measurement 83 (2016) 72–85. [Google Scholar]
  • S. Yousefi, R. Soltani, A. Bonyadi Naeini and R. Farzipoor Saen, A robust hybrid artificial neural network double frontier data envelopment analysis approach for assessing sustainability of power plants under uncertainty. Expert Syst. 36 (2019) e12435. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.