Free Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 1, January-February 2021
Page(s) 167 - 187
DOI https://doi.org/10.1051/ro/2020145
Published online 12 March 2021
  • K. Amini and A.G. Rizi, A new structured quasi-newton algorithm using partial information on hessian. J. Comput. Appl. Math. 234 (2010) 805–811. [Google Scholar]
  • N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained optimization. Stud. Inf. Control 16 (2007) 333–352. [Google Scholar]
  • N. Andrei, Conjugate gradient algorithms for unconstrained optimization. A survey on their definition. Technical report, ICI Technical Report (2008). [Google Scholar]
  • N. Andrei, Accelerated conjugate gradient algorithm with modified secant condition for unconstrained optimization. Stud. Inf. Control 18 (2009) 211–232. [Google Scholar]
  • N. Andrei, Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization. Numer. Algorithms 54 (2010) 23–46. [Google Scholar]
  • N. Andrei, A numerical study on efficiency and robustness of some conjugate gradient algorithms for large-scale unconstrained optimization. Stud. Inf. Control 22 (2013) 259–284. [Google Scholar]
  • N. Andrei, A Dai-Liao conjugate gradient algorithm with clustering of eigenvalues. Numer. Algorithms 77 (2018) 1273–1282. [Google Scholar]
  • S. Babaie-Kafaki, Two modified scaled nonlinear conjugate gradient methods. J. Comput. Appl. Math. 261 (2014) 172–182. [Google Scholar]
  • S. Babaie-Kafaki and R. Ghanbari, The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices. Eur. J. Oper. Res. 234 (2014) 625–630. [Google Scholar]
  • S. Babaie-Kafaki and R. Ghanbari, A descent family of Dai-Liao conjugate gradient methods. Optim. Methods Softw. 29 (2014) 583–591. [Google Scholar]
  • S. Babaie-Kafaki and N. Mahdavi-Amiri, Two modified hybrid conjugate gradient methods based on a hybrid secant equation. Math. Model. Anal. 18 (2013) 32–52. [Google Scholar]
  • S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, Two new conjugate gradient methods based on modified secant equations. J. Comput. Appl. Math. 234 (2010) 1374–1386. [MathSciNet] [Google Scholar]
  • S. Babaie-Kafaki, M. Fatemi and N. Mahdavi-Amiri, Two effective hybrid conjugate gradient algorithms based on modified bfgs updates. Numer. Algorithms 58 (2011) 315–331. [Google Scholar]
  • A.C. Bovik, Handbook of Image and Video Processing. Academic Press (2010). [Google Scholar]
  • A.M. Bruckstein, D.L. Donoho and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51 (2009) 34–81. [Google Scholar]
  • Y.-H. Dai and L.-Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101. [Google Scholar]
  • Y.-H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. [Google Scholar]
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [Google Scholar]
  • X.L. Dong, H.W. Liu and Y.B. He, New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction. Appl. Math. Comput. 269 (2015) 606–617. [MathSciNet] [Google Scholar]
  • X. Dong, D. Han, Z. Dai, L. Li and J. Zhu, An accelerated three-term conjugate gradient method with sufficient descent condition and conjugacy condition. J. Optim. Theory Appl. 179 (2018) 944–961. [Google Scholar]
  • M. Fatemi, A new efficient conjugate gradient method for unconstrained optimization. J. Comput. Appl. Math. 300 (2016) 207–216. [Google Scholar]
  • R. Fletcher, Practical Methods of Optimization. John Wiley & Sons, New York, NY (2013). [Google Scholar]
  • R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154. [Google Scholar]
  • N.I. Gould, D. Orban and P.L. Toint, CUTEr and SifDec: A constrained and unconstrained testing environment, revisited. ACM Trans. Math. Soft. 29 (2003) 373–394. [Google Scholar]
  • W.W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16 (2005) 170–192. [Google Scholar]
  • W.W. Hager and H. Zhang, Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32 (2006) 113–137. [Google Scholar]
  • W.W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2 (2006) 35–58. [MathSciNet] [Google Scholar]
  • P.C. Hansen, J.G. Nagy and D.P. O’leary, Deblurring Images: Matrices, Spectra, and Filtering. Vol. 3 of: Fundamentals of Algorithms. SIAM (2006). [Google Scholar]
  • M.R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Nat. l Bur. Standards 49 (1952) 2379. [Google Scholar]
  • X. Jiang and J. Jian, Improved Fletcher-Reeves and Dai-Yuan conjugate gradient methods with the strong wolfe line search. J. Comput. Appl. Math. 348 (2019) 525–534. [Google Scholar]
  • G. Li, C. Tang and Z. Wei, New conjugacy condition and related new conjugate gradient methods for unconstrained optimization. J. Comput. Appl. Math. 202 (2007) 523–539. [Google Scholar]
  • Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory Appl. 69 (1991) 129–137. [Google Scholar]
  • Y. Lu, Out-of-focus Blur: Image De-blurring. Preprint: arXiv:1710.00620 (2017). [Google Scholar]
  • Y. Narushima and H. Yabe, Conjugate gradient methods based on secant conditions that generate descent search directions for unconstrained optimization. J. Comput. Appl. Math. 236 (2012) 4303–4317. [MathSciNet] [Google Scholar]
  • B.T. Polyak, The conjugate gradient method in extremal problems. Comput. Math. Math. Phys. 9 (1969) 94–112. [Google Scholar]
  • F. Vankawala, A. Ganatra and A. Patel, A survey on different image deblurring techniques. Int. J. Comput. Math. 116 (2015) 15–18. [Google Scholar]
  • Z. Wei, G. Li and L. Qi, New quasi-newton methods for unconstrained optimization problems. Appl. Math. Comput. 175 (2006) 1156–1188. [Google Scholar]
  • Y.-W. Wen, M.K. Ng and W.-K. Ching, Iterative algorithms based on decoupling of deblurring and denoising for image restoration. SIAM J. Sci. Comput. 30 (2008) 2655–2674. [Google Scholar]
  • H. Yabe and M. Takano, Global convergence properties of nonlinear conjugate gradient methods with modified secant condition. Comput. Optim. Appl. 28 (2004) 203–225. [MathSciNet] [Google Scholar]
  • J. Zhang and C. Xu, Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations. J. Comput. Appl. Math. 137 (2001) 269–278. [Google Scholar]
  • J. Zhang, N. Deng and L. Chen, New quasi-newton equation and related methods for unconstrained optimization. J. Optim. Theory Appl. 102 (1999) 147–167. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.