Free Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 1, January-February 2021
Page(s) 141 - 165
DOI https://doi.org/10.1051/ro/2020024
Published online 12 March 2021
  • I. Al-Mudahka, M. Hifi and R. M’Hallah, Packing circles in the smallest circle: an adaptive hybrid algorithm. J. Oper. Res. Soc. 62 (2011) 1917–1930. [Google Scholar]
  • Y.P. Aneja and M. Parlar, Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel. Transp. Sci. 28 (1994) 70–76. [Google Scholar]
  • M. Bischoff and K. Klamroth, An efficient solution method for Weber problems with barriers based on genetic algorithms. Eur. J. Oper. Res. 177 (2007) 22–41. [Google Scholar]
  • R. Bosch and M. Trick, Integer programming, edited by E.K. Burke and G. Kendall. In: Search Methodologies: Introductory Tutorial in Optimization and Decision Support Techniques, Chapter 3. Springer, US (2005) 69–95. [Google Scholar]
  • S.E. Butt, Facility location in the presence of forbidden regions. Ph.D. thesis, Pennsylvania State University, University Park, PA (1994). [Google Scholar]
  • S.E. Butt and T.M. Cavalier, An efficient algorithm for facility locations in the presence of forbidden regions. Eur. J. Oper. Res. 90 (1996) 56–70. [Google Scholar]
  • S.E. Butt and T.M. Cavalier, Facility location in the presence of congested regions with the rectilinear distance metric. Socio Econ. Plan. Sci. 31 (1997) 103–113. [Google Scholar]
  • E.W. Dijkstra, A note on two problems in connection with graphs. Numer. Math. 1 (1959) 269–271. [Google Scholar]
  • Z. Drezner, Sensitivity analysis of the optimal location of a facility. Nav. Res. Log. Q. 32 (1985) 209–224. [Google Scholar]
  • R.L. Francis, L.F. McGinnis and J.A. White, Facility Layout and Location: An Analytical Approach. Prentice Hall, New York (1992). [Google Scholar]
  • A. Ghaderi, M.S. Jabalameli, F. Barzinpour and R. Rahmaniani, An efficient hybrid particle swarm optimization algorithm for solving the uncapacitated continuous location-allocation problem. Netw. Spat. Econ. 12 (2012) 421–439. [Google Scholar]
  • S.K. Ghosh and D.M. Mount, An output-sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20 (1991) 888–910. [Google Scholar]
  • H.W. Hamacher and K. Klamroth, Planar Weber location problems with barriers and block norms. Ann. Oper. Res. 96 (2000) 191–208. [Google Scholar]
  • I.N. Katz and L. Cooper, Facility location in the presence of forbidden regions, II: Euclidean distance and several forbidden circles. Report OREM 79006, Department of Operations Research and Engineering Management, Southern Methodist University, Dallas, TX (1979). [Google Scholar]
  • I.N. Katz and L. Cooper, Facility location in the presence of forbidden regions, III: lp distance and polygonal forbidden regions. Report OREM 79006, Department of Operations Research and Engineering Management, Southern Methodist University, Dallas, TX (1979). [Google Scholar]
  • I.N. Katz and L. Cooper, Facility location in the presence of forbidden regions, I: formulation and the case of Euclidean distance with one forbidden circle. Eur. J. Oper. Res. 6 (1981) 166–173. [Google Scholar]
  • L.A. Kazakovtsev, Algorithm for constrained Weber problem with feasible region bounded by arcs. Facta Univ. Ser.: Math. Inf. 28 (2013) 271–284. [Google Scholar]
  • K. Klamroth, Single-Facility Location Problems with Barriers. Springer Series in Operations Research. Springer, Berlin (2002). [Google Scholar]
  • H. Kuhn, A note on Fermat’s problem. Math. Program. 4 (1973) 98–107. [Google Scholar]
  • R.F. Love, J.G. Morris and G.O. Wesolowsky, Facilities Location: Models and Methods. Elsevier, New York (1988). [Google Scholar]
  • R.G. McGarvey and T.M. Cavalier, A global optimal approach to facility location in the presence of forbidden regions. Comput. Ind. Eng. 45 (2003) 1–15. [Google Scholar]
  • M.A. Prakash, K.V.L. Raju and V.R. Raju, Facility location problems in the presence of mixed forbidden regions. Int. J. Appl. Eng. Res. 13 (2018) 91–97. [Google Scholar]
  • B. Satyanarayana, K.V.L. Raju and K.V.V. Mohan, Facility location problems in the presence of single convex/non-convex polygonal barrier/forbidden region. Opsearch 41 (2004) 87–105. [Google Scholar]
  • R. Sedgewick and J.S. Vitter, Shortest paths in Euclidean graphs. Algorithmica 1 (1986) 31–48. [Google Scholar]
  • H.D. Sherali and I. Al-Loughani, Equivalent primal and dual differentiable reformulations of the Euclidean multifacility location problem. IIE Trans. 30 (1998) 1065–1074. [Google Scholar]
  • H.D. Sherali and I. Al-Loughani, Solving Euclidean distance multi-facility location problems using conjugate subgradient and line-search methods. Comput. Optim. App. 14 (1999) 275–291. [Google Scholar]
  • L. Shi and C.H. Chen, A new algorithm for stochastic discrete resource allocation optimization. Disc. Event Dyn. Syst. 10 (2000) 271–294. [Google Scholar]
  • L. Shi and S. Men, Optimal buffer allocation in production lines. IIE Trans. 35 (2003) 1–10. [Google Scholar]
  • L. Shi and S. Olafsson, Nested partitions method for global optimization. Oper. Res. 48 (2000) 390–407. [Google Scholar]
  • L. Shi, S. Olafsson and Q. Chen, A new hybrid optimization algorithm. Comput. Ind. Eng. 36 (1999) 409–426. [Google Scholar]
  • L. Shi, S. Olafsson and N. Sun, New parallel randomized algorithms for the traveling salesman problem. Comput. Oper. Res. 26 (1999) 371–394. [Google Scholar]
  • G.A. Torres, A Weiszfeld-like algorithm for a weber location problem constrained to a closed and convex set. Preprint arXiv:1204.1087 (2012). [Google Scholar]
  • G. Wangdahl, S. Pollock and J. Woodward, Minimum trajectory pipe routing. J. Ship Res. 18 (1974) 46–49. [Google Scholar]
  • E. Weiszfeld, Sur le point par lequel la somme des distances de # points donnés est minimum. Tohoku Math. J. 43 (1937) 355–386. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.