Free Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 589 - 610
DOI https://doi.org/10.1051/ro/2021025
Published online 09 April 2021
  • Z. Ahmed, T.Y. ElMekkawy and S. Bates, Developing an efficient scheduling template of a chemotherapy treatment unit: a case study. Australas. Med. J. 4 (2011) 575–588. [PubMed] [Google Scholar]
  • M. Benzaid, N. Lahrichi and L.M. Rousseau, Chemotherapy appointment scheduling and daily outpatient-nurse assignment. Health Care Manag. Sci. 23 (2020) 34–50. [PubMed] [Google Scholar]
  • A. Condotta and N.V. Shakhlevich, Scheduling patient appointments via multilevel template: a case study in chemotherapy. Oper. Res. Health Care 3 (2014) 129–144. [Google Scholar]
  • J. Connell, Contemporary medical tourism: conceptualisation culture and commodification. Tourism Manage. 34 (2013) 1–13. [Google Scholar]
  • R. Donahue, D. Russell, C. de Riese, C. Smith, W.T.W. de Riese and A. Medway, Patients willing to wait: arrival time wait time and patient satisfaction in an ambulatory urology clinic. Urology Pract. 4 (2017) 1–6. [Google Scholar]
  • J. Framinan, J. Gupta and R. Leisten, A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. J. Oper. Res. Soc. 55 (2004) 1243–1255. [Google Scholar]
  • T. Garaix, S. Rostami and X. Xie, Daily outpatient chemotherapy appointment scheduling with random deferrals. Flexible Serv. Manuf. J. 38 (2020) 1–25. [Google Scholar]
  • M.R. Garey, D.S. Johnson and D.R. Sethi, The complexity of flowshop and job shop scheduling. Math. Oper. Res. 1 (1976) 117–129. [Google Scholar]
  • F. Glover, Tabu search – Part I. ORSA J. Comput. 1 (1989) 129–153. [Google Scholar]
  • R.L. Graham, E.L. Lawler, J.K. Lenstra and A. Kan, H. G. R.. Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5 (1979) 287–326. [Google Scholar]
  • C. Granja, B. Almada-Lobo, F. Janela, J. Seabra and A. Mendes, An optimization based on simulation approach to the patient admission scheduling problem using a linear programing algorithm. J. Biomed. Inf. 52 (2014) 427–437. [Google Scholar]
  • J.N.D. Gupta, Two-stage hybrid flow-shop scheduling problem. J. Oper. Res. Soc. 389 (1988) 359–364. [Google Scholar]
  • S. Hahn-Goldberg, M. Carter, J.C. Beck, M. Trudeau, P. Sousa and K. Beattie, Dynamic optimization of chemotherapy outpatient scheduling with uncertainty. Health Care Manag. Sci. 17 (2014) 379–392. [PubMed] [Google Scholar]
  • A.F. Hesaraki, N.P. Dellaert and T. de Kok, Generating outpatient chemotherapy appointment templates with balanced flowtime and makespan. Eur. J. Oper. Res. 275 (2019) 304–318. [Google Scholar]
  • L. Hopkins, R. Labonté, V. Runnels and C. Packer, Medical tourism today: What is the state of existing knowledge. J. Publ. Health Policy 31 (2010) 185–198. [Google Scholar]
  • J.A. Hoogeveen, J.K. Lenstra and B. Veltman, Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard. Eur. J. Oper. Res. 89 (1996) 172–175. [Google Scholar]
  • Y.-L. Huang, A.H. Bryce, T. Culbertson, S.L. Connor, S.A. Looker, K.M. Altman, J.G. Collins, W. Stellner, R.R. McWilliams, Moreno-Aspitia, S. Ailawadhi and R.A. Mesa, Alternative outpatient chemotherapy scheduling method to improve patient service quality and nurse satisfaction. J. Oncol. Pract. 14 (2018) 82–91. [Google Scholar]
  • Y. Huang, S. Bach and S. Looker, Chemotherapy scheduling template development using an optimization approach. Int. J. Health Care Qual. Assur. 32 (2019) 59–70. [PubMed] [Google Scholar]
  • R. Kunwar Ramesh, Medical tourism and hospitality in hospital the gaze. J. Tourism Hospitality 10 (2019) 67–123. [Google Scholar]
  • M. Laguna, J.W. Barnes and F.W. Glover, Tabu search methods for a single machine scheduling problem. J. Intell. Manuf. 2 (1991) 63–73. [Google Scholar]
  • F. Li, D. Gupta and S. Potthoff, Improving operating room schedules. Health Care Manag. Sci. 19 (2016) 261–278. [PubMed] [Google Scholar]
  • B. Liang and A. Turkcan, Acuity-based nurse assignment and patient scheduling in oncology clinics. Health Care Manag. Sci. 19 (2016) 207–226. [PubMed] [Google Scholar]
  • W.J. Mackillop, Killing time: the consequences of delays in radiotherapy. Radiother. Oncol. 84 (2007) 1–4. [PubMed] [Google Scholar]
  • K.D. Miller, R.L. Siegel, C.C. Lin, A.B. Mariotto, J.L. Kramer, J.H. Rowland, K.D. Stein, R. Alteri and A. Jemal, Cancer treatment and survivorship statistics CA: a cancer. J. Clin. 69 (2016) 363–385. [Google Scholar]
  • L. Minh-Duc, H. Minh, N. Nhat, B. Chantal, G. Viviane and D. Tien Ba, Heuristics to solve appointment scheduling in chemotherapy. In: 2015 IEEE RIVF International Conference, Can Tho, Vietnam (25–28 Jan 2015). [Google Scholar]
  • J.J. Mogaka, T.P. Mashamba-Thompson, J.M. Tsoka-Gwegweni and L.M. Mupara, Tourism and leisure effects of medical tourism on health systems in Africa. Afr. J. Hospitality 6 (2017) 1–25. [Google Scholar]
  • C. Oguz and M.F. Ercan, A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. J. Scheduling 8 (2005) 323–351. [Google Scholar]
  • J. Ragaz, I.A. Olivotto, J.J. Spinelli, N. Phillips, S.M. Jackson, K.S. Wilson, M.A. Knowling, C.M.L. Coppin, L. Weir, K. Gelmon, N. Le, R. Durand, A.J. Coldman and M. Manji, Locoregional radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy: 20-year results of the British Columbia randomized trial. J. Nat. Cancer Inst. 97 (2005) 116–126. [Google Scholar]
  • A. Ranerup, H. Zinner Henriksen and J. Hedman, An analysis of business models in Public Service Platforms. Government Inf. Q. 33 (2016) 6–14. [Google Scholar]
  • G. Ridic, S. Gleason and O. Ridic, Comparisons of health care systems in the United States, Germany and Canada. Mater. Soc. Med. 24 (2012) 112–120. [Google Scholar]
  • R. Ruiz and J.A. Vázquez-Rodríguez, The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 205 (2010) 1–18. [Google Scholar]
  • A. Sadki, X. Xie and F. Chauvin, Planning oncologists of ambulatory care units. Decis. Support Syst. 55 (2013) 640–649. [Google Scholar]
  • R.B. Saltman, Melting public-private boundaries in European health systems. Eur. J. Publ. Health 13 (2003) 24–29. [Google Scholar]
  • P. Santibáñez, R. Aristizabal, M.L. Puterman, V.S. Chow, W. Huang, C. Kollmannsberger, T. Nordin, N. Runzer and S. Tyldesley, Operations research methods improve chemotherapy patient appointment scheduling. Jt. Comm. J. Qual. Patient Saf. 38 (2012) 541–553. [PubMed] [Google Scholar]
  • S. Shashaani, Chemotherapy patient scheduling and uncertainty. Master thesis, Purdue University (2011). [Google Scholar]
  • S. Shahnawaz, Optimization of the patients appointments in chemotherapy treatment unit: heuristic and metaheuristic approaches. Master thesis, University of Manitoba (2012). [Google Scholar]
  • C.S. Sung and H.A. Kim, A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times. Int. J. Prod. Econ. 113 (2008) 1038–1048. [Google Scholar]
  • T. Tanaka, Infusion chair scheduling algorithms based on bin-packing heuristics. Master thesis, Binghamton University (2013). [Google Scholar]
  • A. Turkcan, B. Zeng and M. Lawley, Chemotherapy Operations Planning and Scheduling. IIE Trans. Healthc. Syst. Eng. 2 (2012) 31–49. [Google Scholar]
  • H.M. Wang, F.D. Chou, F.C. Wu and M.Y. Ku, Hybrid flow shop scheduling problems with multiprocessor tasks. Appl. Mech. Mater. 110 (2011) 3914–3921. [Google Scholar]
  • J.C. Woodall, T. Gosselin, A. Boswell, M. Murr and B.T. Denton, Improving patient access to chemotherapy treatment at Duke Cancer Institute. Interfaces 43 (2013) 449–461. [Google Scholar]
  • K.-C. Ying and S.-W. Lin, Scheduling multistage hybrid flowshops with multiprocessor tasks by an effective heuristic. Int. J. Prod. Res. 47 (2009) 3525–3538. [Google Scholar]
  • M. Yokouchi, S. Aoki, H. Sang and R. Zhao, S. Takakuwa, Operations analysis and appointment scheduling for an outpatient chemotherapy department. In: Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany (February 2013) 907–918. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.