Free Access
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 873 - 897
Published online 06 May 2021
  • M. Alharbi and M. Jemmali, Algorithms for investment project distribution on regions. Comput. Intell. Neurosci. 2020 (2020) 3607547. [PubMed] [Google Scholar]
  • H. Alquhayz, M. Jemmali and M.M. Otoom, Dispatching-rule variants algorithms for used spaces of storage supports. Discrete Dyn. Nat. Soc. 2020 (2020). [CrossRef] [Google Scholar]
  • A.C. Alvim and C.C. Ribeiro, A hybrid bin–packing heuristic to multiprocessor scheduling. In: International Workshop on Experimental and Efficient Algorithms. Springer (2004) 1–13. [Google Scholar]
  • K.J. Arrow, Economic Welfare and the Allocation of Resources for Invention. Macmillan Education UK, London (1972) 219–236. [Google Scholar]
  • B.S. Baker, A new proof for the first-fit decreasing bin-packing algorithm. J. Algorithms 6 (1985) 49–70. [Google Scholar]
  • M. Dell’Amico and S. Martello, Optimal scheduling of tasks on identical parallel processors. ORSA J. Comput. 7 (1995) 191–200. [Google Scholar]
  • M. Haouari and A. Gharbi, Fast lifting procedures for the bin packing problem. Discrete Optim. 2 (2005) 201–218. [Google Scholar]
  • M. Haouari and M. Jemmali, Tight bounds for the identical parallel machine-scheduling problem: Part II. Int. Trans. Oper. Res. 15 (2008) 19–34. [Google Scholar]
  • M. Haouari and M. Jemmali, Maximizing the minimum completion time on parallel machines. 4OR 6 (2008) 375–392. [Google Scholar]
  • M. Haouari, A. Gharbi and M. Jemmali, Tight bounds for the identical parallel machine scheduling problem. Int. Trans. Oper. Res. 13 (2006) 529–548. [Google Scholar]
  • M. Jemmali, Approximate solutions for the projects revenues assignment problem. Commun. Math. App. 10 (2019) 653–658. [Google Scholar]
  • M. Jemmali, Budgets balancing algorithms for the projects assignment. Int. J. Adv. Comput. Sci. App. 10 (2019) 574–578. [Google Scholar]
  • M. Jemmali, L.K.B. Melhim, S.O.B. Alharbi and A.S. Bajahzar, Lower bounds for gas turbines aircraft engines. Commun. Math. App. 10 (2019) 637–642. [Google Scholar]
  • M. Jemmali, L.K.B. Melhim and M. Alharbi, Randomized-variants lower bounds for gas turbines aircraft engines. In: World Congress on Global Optimization. Springer (2019) 949–956. [Google Scholar]
  • N. Katoh and T. Ibaraki, Resource Allocation Problems. Springer US, Boston, MA (1999) 905–1006. [Google Scholar]
  • H. Kellerer, U. Pferschy and D. Pisinger, Multidimensional knapsack problems. In: knapsack problems. Springer (2004) 235–283. [Google Scholar]
  • E.L. Lawler, J.K. Lenstra, A.H.R. Kan and D.B. Shmoys, Sequencing and scheduling: algorithms and complexityIn: Vol. 4 of Handbooks in Operations Research and Management Science (1993) 445–522. [Google Scholar]
  • S. Martello, D. Pisinger and P. Toth, Dynamic programming and strong bounds for the 0–1 knapsack problem. Manage. Sci. 45 (1999) 414–424. [Google Scholar]
  • R. Walter, M. Wirth and A. Lawrinenko, Improved approaches to the exact solution of the machine covering problem. J. Scheduling 20 (2017) 147–164. [Google Scholar]
  • D. Pisinger, Dynamic programming on the word ram. Algorithmica 35 (2003) 128–145. [Google Scholar]
  • B. Xia and Z. Tan, Tighter bounds of the first fit algorithm for the bin-packing problem. Discrete Appl. Math. 158 (2010) 1668–1675. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.