Free Access
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 861 - 872
Published online 07 May 2021
  • N. Absi and S. Kedad-Sidhoum, MIP-based heuristics for multi-item capacitated lot-sizing problem with setup times and shortage costs. RAIRO:OR 41 (2007) 171–192. [Google Scholar]
  • S. Ahmed, A.J. King and G. Parija, A multi-stage stochastic integer programming approach for capacity expansion under uncertainty. J. Glob. Optim. 26 (2003) 3–24. [Google Scholar]
  • I. Barany, T. Roy and L.A. Wolsey, Uncapacitated lot-sizing: the convex hull of solutions, edited by B. Korte and K. Ritter. In: Mathematical Programming at Oberwolfach II. Springer Berlin Heidelberg, Berlin, Heidelberg (1984) 32–43. [Google Scholar]
  • J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd edition. In: Springer Series in Operations Research and Financial Engineering. Springer, New York (2011). [Google Scholar]
  • G.R. Bitran and H.H. Yanasse, Computational complexity of the capacitated lot size problem. Manage. Sci. 28 (1982) 1174–1186. [Google Scholar]
  • N. Brahimi, S. Dauzere-Peres, N.M. Najid and A. Nordli, Single item lot sizing problems. Eur. J. Oper. Res. 168 (2006) 1–16. [CrossRef] [Google Scholar]
  • P. Brandimarte, Multi-item capacitated lot-sizing with demand uncertainty. Int. J. Prod. Res. 44 (2006) 2997–3022. [Google Scholar]
  • T.H. de Mello and B.K. Pagnoncelli, Risk aversion in multistage stochastic programming: a modeling and algorithmic perspective. Eur. J. Oper. Res. 249 (2016) 188–199. [Google Scholar]
  • L.F. Escudero, M.A. Garn, J.F. Monge and A. Unzueta, Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management. Eur. J. Oper. Res. 285 (2020) 988–1001. [Google Scholar]
  • R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming. Duxbury Press (2002). [Google Scholar]
  • Y. Guan, S. Ahmed, G.L. Nemhauser and A.J. Miller, A branch-and-cut algorithm for the stochastic uncapacitated lot-sizing problem. Math. Program. 105 (2006) 55–84. [Google Scholar]
  • Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2018). [Google Scholar]
  • M. Hosseini and S. MirHassani, A heuristic algorithm for optimal location of flow-refueling capacitated stations. Int. Trans. Oper. Res. 24 (2017) 1377–1403. [Google Scholar]
  • K. Huang and S. Küçükyavuz, On stochastic lot-sizing problems with random lead times. Oper. Res. Lett. 36 (2008) 303–308. [Google Scholar]
  • R. Jiang and Y. Guan, An O(n2)-time algorithm for the stochastic uncapacitated lot-sizing problem with random lead times. Oper. Res. Lett. 39 (2011) 74–77. [Google Scholar]
  • J. Krarup and O. Bilde, Plant location, set covering and economic lot size: an O(mn)-algorithm for structured problems, edited by L. Collatz, G. Meinardus and W. Wetterling. In: Numerische Methoden bei Optimierungsaufgaben Band 3: Optimierung bei graphentheoretischen und ganzzahligen Problemen. Basel, Birkhäuser (1977) 155–180. [Google Scholar]
  • C.-Y. Lee, S. Çetinkaya and A.P.M. Wagelmans, A dynamic lot-sizing model with demand time windows. Manage. Sci. 47 (2001) 1384–1395. [Google Scholar]
  • X. Liu and S. Küçükyavuz, A polyhedral study of the static probabilistic lot-sizing problem. Ann. Oper. Res. 261 (2018) 233–254. [Google Scholar]
  • G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization. John Wiley & Sons, Inc. (1988). [Google Scholar]
  • M. Ritt and A. Costa, Improved integer programming models for simple assembly line balancing and related problems. Int. Trans. Oper. Res. 25 (2018) 1345–1359. [Google Scholar]
  • W. Römisch and R. Schultz, Multistage stochastic integer programs: an introduction, edited by M. Grötschel, S.O. Krumke and J. Rambau. In: Online Optimization of Large Scale Systems. Springer, Berlin Heidelberg (2001) 581–600. [Google Scholar]
  • D. Tas, M. Gendreau, O. Jabali and R. Jans, A capacitated lot sizing problem with stochastic setup times and overtime. Eur. J. Oper. Res. 273 (2019) 146–159. [Google Scholar]
  • C.E. Testuri, B. Zimberg and G. Ferrari, Modelado estocástico múltiple etapa de adquisición de combustible para la generación de electricidad bajo demanda incierta. Tech. rep. INCO RT 12-07. Instituto de Computación, Facultad de Ingeniería, Universidad de la República (2012). [Google Scholar]
  • C.E. Testuri, H. Cancela and V.M. Albornoz, Stochastic discrete lot-sizing with lead times for fuel supply optimization. Pesqui. Oper. 39 (2019) 37–55. [Google Scholar]
  • C.E. Testuri, H. Cancela and V.M. Albornoz, Undominated valid inequalities for a stochastic capacitated discrete lot-sizing problem with lead times, cancellation and postponement. In: Proceedings of the 8th International Conference on Operations Research and Enterprise Systems. SCITEPRESS Digital Library (2019) 390–397. [Google Scholar]
  • A. Wagelmans, S.V. Hoesel and A. Kolen, Economic lot sizing: an O(nlogn) algorithm that runs in linear time in the Wagner-Whitin case. Oper. Res. 40 (1992) S145–S156. [Google Scholar]
  • H.M. Wagner and T.M. Whitin, Dynamic version of the economic lot size model. Manage. Sci. 5 (1958) 89–96. [Google Scholar]
  • A.L. Wolsey, Lot-sizing with production and delivery time windows. Math. Program. 107 (2006) 471–489. [Google Scholar]
  • B. Zimberg, C.E. Testuri and G. Ferrari, Stochastic modeling of fuel procurement for electricity generation with contractual terms and logistics constraints. Comput. Chem. Eng. 123 (2019) 49–63. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.