Free Access
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 1015 - 1042
Published online 06 May 2021
  • L. Alnaji and M. Ridha, The role of supply chain applications in Jordanian pharmacies: a case study on pharmacies in the capital city Amman. Ind. Eng. Lett. 3 (2013) 65–71. [Google Scholar]
  • A.C.S. Amaro and A.P.F. Barbosa-Póvoa, Planning and scheduling of industrial supply chains with reverse flows: a real pharmaceutical case study. Comput. Chem. Eng. 32 (2008) 2606–2625. [Google Scholar]
  • Z. Azadehranjbar, A. Bozorgi-Amiri and A. Zandi, Warehouse redesigning in a three-echelon supply chain network with consideration of routing under uncertainty. RAIRO:OR 55 (2021) S147–S166. [Google Scholar]
  • A. Baniamerian, M. Bashiri and R. Tavakkoli-Moghaddam, Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking. Appl. Soft Comput. 75 (2019) 441–460. [Google Scholar]
  • S.H. Chung and C. Kwon, Integrated supply chain management for perishable products: dynamics and oligopolistic competition perspectives with application to pharmaceuticals. Int. J. Prod. Econ. 179 (2016) 117–129. [Google Scholar]
  • M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic. In: Vol. 2 of Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406). IEEE, 1999, pp. 1470–1477. [Google Scholar]
  • M.B. Fakhrzad and F. Goodarzian, A fuzzy multi-objective programming approach to develop a green closed-loop supply chain network design problem under uncertainty: modifications of imperialist competitive algorithm. RAIRO: OR 53 (2019) 963–990. [Google Scholar]
  • M.B. Fakhrzad and F. Goodarzian, A new multi-objective mathematical model for a Citrus supply chain network design: metaheuristic algorithms. J. Optim. Ind. Eng. 14 (2020) 127–144. [Google Scholar]
  • M.B. Fakhrzad, P. Talebzadeh and F. Goodarzian, Mathematical formulation and solving of green closed-loop supply chain planning problem with production, distribution and transportation reliability. Int. J. Eng. 31 (2018) 2059–2067. [Google Scholar]
  • M.B. Fakhrzad, F. Goodarzian and A.M. Golmohammadi, Addressing a fixed charge transportation problem with multi-route and different capacities by novel hybrid meta-heuristics. J. Ind. Syst. Eng. 12 (2019) 167–184. [Google Scholar]
  • A.M. Fathollahi-Fard, A. Ahmadi, F. Goodarzian and N. Cheikhrouhou, A bi-objective home healthcare routing and scheduling problem considering patients’ satisfaction in a fuzzy environment. Appl. Soft Comput. 93 (2020) 106385. [PubMed] [Google Scholar]
  • M. Fazli-Khalaf, S.K. Chaharsooghi and M.S. Pishvaee, A new robust possibilistic programming model for reliable supply chain network design: a case study of lead-acid battery supply chain. RAIRO: OR 53 (2019) 1489–1512. [Google Scholar]
  • M. Forozandeh, E. Teimoury and A. Makui, A mathematical formulation of time-cost and reliability optimization for supply chain management in research-development projects. RAIRO: OR 53 (2019) 1385–1406. [Google Scholar]
  • G. Gatica, L.G. Papageorgiou and N. Shah, Capacity planning under uncertainty for the pharmaceutical industry. Chem. Eng. Res. Design 81 (2003) 665–678. [Google Scholar]
  • F. Goodarzian and H. Hosseini-Nasab, Applying a fuzzy multi-objective model for a production–distribution network design problem by using a novel self-adoptive evolutionary algorithm. Int. J. Syst. Sci.: Oper. Logistics 8 (2019) 1–22. [Google Scholar]
  • F. Goodarzian, H. Hosseini-Nasab, J. Muñuzuri and M.B. Fakhrzad, A multi-objective pharmaceutical supply chain network based on a robust fuzzy model: a comparison of meta-heuristics. Appl. Soft Comput. 92 (2020) 106331. [Google Scholar]
  • F. Goodarzian, H. Hosseini-Nasab and M.B. Fakhrzad, A multi-objective sustainable medicine supply chain network design using a novel hybrid multi-objective metaheuristic algorithm. Int. J. Eng. 33 (2020) 1986–1995. [Google Scholar]
  • F. Goodarzian, A. Abraham and A.M. Fathollahi-Fard, A biobjective home health care logistics considering the working time and route balancing: a self-adaptive social engineering optimizer. J. Comput. Design Eng. 8 (2021) 452–474. [Google Scholar]
  • F. Goodarzian, A.A. Taleizadeh, P. Ghasemi and A. Abraham, An integrated sustainable medical supply chain network during COVID-19. Eng. App. Artif. Intell. 100 (2021) . [Google Scholar]
  • P. Hansen and N. Mladenović, Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130 (2001) 449–467. [Google Scholar]
  • S.D. Hosseini, M.A. Shirazi and B. Karimi, Cross-docking and milk run logistics in a consolidation network: a hybrid of harmony search and simulated annealing approach. J. Manuf. Syst. 33 (2014) 567–577. [Google Scholar]
  • G. Jamali, S.S. Sana and R. Moghdani, Hybrid improved cuckoo search algorithm and genetic algorithm for solving Markov-modulated demand. RAIRO:OR 52 (2018) 473–497. [Google Scholar]
  • G. Jetly, C.L. Rossetti and R. Handfield, A multi-agent simulation of the pharmaceutical supply chain. In: Agent-Based Modeling and Simulation. Palgrave Macmillan, London (2014) 133–154. [Google Scholar]
  • R. Jovanovic, M. Tuba and S. Voß, An efficient ant colony optimization algorithm for the blocks relocation problem. Eur. J. Oper. Res. 274 (2019) 78–90. [Google Scholar]
  • P. Karakostas, A. Sifaleras and M.C. Georgiadis, A general variable neighborhood search-based solution approach for the location-inventory-routing problem with distribution outsourcing. Comput. Chem. Eng. 126 (2019) 263–279. [Google Scholar]
  • S. Khalifehzadeh, M.B. Fakhrzad, A stochastic bi-objective mathematical model for optimizing a production and distribution system with stochastic demand and stochastic lead time, Int. J. Eng. Sci. (2008–4870) 29 (2018). [Google Scholar]
  • M. Khorbatly, H. Dkhil, H. Alabboud and A. Yassine, A hybrid algorithm Tabu Search-GRASP for wounded evacuation in disaster response. RAIRO: OR 54 (2020) 19–36. [Google Scholar]
  • S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 34 (1984) 975–986. [CrossRef] [Google Scholar]
  • N. Leite, F. Melcio and A.C. Rosa, A fast simulated annealing algorithm for the examination timetabling problem. Expert Syst. App. 122 (2019) 137–151. [Google Scholar]
  • J. Luan, Z. Yao, F. Zhao and X. Song, A novel method to solve supplier selection problem: hybrid algorithm of genetic algorithm and ant colony optimization. Math. Comput. Simul. 156 (2019) 294–309. [Google Scholar]
  • H. Ma, X. Li and Y. Liu, Multi-period multi-scenario optimal design for closed-loop supply chain network of hazardous products with consideration of facility expansion. Soft Comput. 24 (2020) 2769–2780. [Google Scholar]
  • M. Mousazadeh, S.A. Torabi and B. Zahiri, A robust possibilistic programming approach for pharmaceutical supply chain network design. Comput. Chem. Eng. 82 (2015) 115–128. [Google Scholar]
  • L.G. Papageorgiou, Supply chain optimization for the process industries: advances and opportunities. Comput. Chem. Eng. 33 (2009) 1931–1938. [Google Scholar]
  • L.G. Papageorgiou, G.E. Rotstein and N. Shah, Strategic supply chain optimization for the pharmaceutical industries. Ind. Eng. Chem. Res. 40 (2001) 275–286. [Google Scholar]
  • G.E. Rotstein, L.G. Papageorgiou, N. Shah, D.C. Murphy and R. Mustafa, A product portfolio approach in the pharmaceutical industry. Comput. Chem. Eng. 23 (1999) S883–S886. [Google Scholar]
  • B. Roy and B.C. Giri, A three-echelon supply chain model with price and two-level quality dependent demand. RAIRO:OR 54 (2020) 37–52. [Google Scholar]
  • N. Sahebjamnia, F. Goodarzian and M. Hajiaghaei-Keshteli, Optimization of multi-period three-echelon citrussupply chain problem. J. Optim. Ind. Eng. 13 (2020) 39–53. [Google Scholar]
  • E. Settanni, T.S. Harrington and J.S. Srai, Pharmaceutical supply chain models: a synthesis from a systems view of operations research. Oper. Res. Perspect. 4 (2017) 74–95. [Google Scholar]
  • S.K. Singh and M. Goh, Multi-objective mixed integer programming and an application in a pharmaceutical supply chain. Int. J. Prod. Res. 57 (2019) 1214–1237. [Google Scholar]
  • R.T. Sousa, S. Liu, L.G. Papageorgiou and N. Shah, Global supply chain planning for pharmaceuticals. Chem. Eng. Res. Design 89 (2011) 2396–2409. [Google Scholar]
  • N. Susarla, I.A. Karimi, Integrated supply chain planning for multinational pharmaceutical enterprises. In: Vol. 29 of Computer Aided Chemical Engineering. Elsevier (2011) 1075–1079. [Google Scholar]
  • E. Tsakirakis, M. Marinaki, Y. Marinakis and N. Matsatsinis, A similarity hybrid harmony search algorithm for the team orienteering problem. Appl. Soft Comput. 80 (2019) 776–796. [Google Scholar]
  • D. Weraikat, M.K. Zanjani and N. Lehoux, Two-echelon pharmaceutical reverse supply chain coordination with customer’s incentives. Int. J. Prod. Econ. 176 (2016) 41–52. [Google Scholar]
  • D. Weraikat, M.K. Zanjani and N. Lehoux, Improving sustainability in a two-level pharmaceutical supply chain through Vendor-Managed Inventory system. Oper. Res. Health Care 21 (2019) 44–55. [Google Scholar]
  • D.H. Wolpert and W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1 (1997) 67–82. [CrossRef] [Google Scholar]
  • E. Yadegari, A. Alem-Tabriz and M. Zandieh, A memetic algorithm with a novel neighborhood search and modified solution representation for closed-loop supply chain network design. Comput. Ind. Eng. 128 (2019) 418–436. [Google Scholar]
  • B. Zahiri, J. Zhuang and M. Mohammadi, Toward an integrated sustainable-resilient supply chain: a pharmaceutical case study. Transp. Res. Part E: Logistics Transp. Rev. 103 (2017) 109–142. [Google Scholar]
  • H. Zarei and M. Rasti-Barzoki, Mathematical programming and three metaheuristic algorithms for a bi-objective supply chain scheduling problem. Neural Comput. App. 31 (2019) 9073–9093. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.