Free Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 997 - 1013
DOI https://doi.org/10.1051/ro/2021048
Published online 07 May 2021
  • I. Abadi, M. Mohammadnejad, R. Sadeghian and F. Ahmadizar, A new mathematical model for closed-loop supply chains considering product pricing, fleet of heterogeneous vehicles, and inventory costs. J. Optim. Ind. Eng. 10 (2017) 29–40. [Google Scholar]
  • A. Abedi and W. Zhu, An optimisation model for purchase, production and distribution in fish supply chain – a case study. Int. J. Prod. Res. 55 (2017) 3451–3464. [Google Scholar]
  • A. Barbosa-Póvoa, As cadeias de abastecimento e a sustentabilidade (Supply chains and sustainability). Boletim APDIO 55 (2016) 5–9. [Google Scholar]
  • G. Brock, V. Pihur, S. Datta and S. Datta, clValid: An R package for cluster validation. J. Stat. Softw. 25 (2008) 1–22. [Google Scholar]
  • R. Byrd, J. Nocedal and R. Waltz, KNITRO: An integrated package for nonlinear optimization. In: Large-scale Nonlinear Optimization. Springer (2006) 35–59. [Google Scholar]
  • A. Carr and L. Smeltzer, The relationship of strategic purchasing to supply chain management. Eur. J. Purchasing Supply Manage. 5 (1999) 43–51. [Google Scholar]
  • T. Choi, K. Govindan, X. Li and Y. Li, Innovative supply chain optimization models with multiple uncertainty factors. Ann. Oper. Res. 257 (2017) 1–14. [Google Scholar]
  • M. Christopher, Logistics & Supply Chain Management. Pearson, UK (2016). [Google Scholar]
  • M. Correia and A. Carvalho, Cadeias de abastecimento de produtos congelados (Supply chains of frozen products). Boletim APDIO 55 (2016) 18–21. [Google Scholar]
  • J. Czyzyk, M. Mesnier and J. Moré, The NEOS server. IEEE J. Comput. Sci. Eng. 5 (1998) 68–75. [Google Scholar]
  • A. Derakhshan, S. Hosseini and A. Hassani, Modeling a multi-period multi-product closed-loop supply chain network design problem considering reused cost and capacity constraints. Int. J. Supply Oper. Manage. 4 (2017) 133–149. [Google Scholar]
  • A. Diogo, Um modelo de reutilização de caixas do fornecedor: caso de estudo (A model for reusing supplier boxes). Master Thesis. Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (2015). [Google Scholar]
  • E. Dolan, The NEOS Server 4.0 administrative guide. Technical Memorandum ANL/MCS-TM-250. Mathematics and Computer Science Division, Argonne National Laboratory (2001). [Google Scholar]
  • D. Fernández, C. Pozo, R. Folgado, G. Guillén-Gosálbez and L. Jiménez, Multiperiod model for the optimal production planning in the industrial gases sector. Appl. Energy 206 (2017) 667–682. [Google Scholar]
  • B. Fleischmann and H. Meyr, Planning hierarchy, modeling and advanced planning systems. Handbooks Oper. Res. Manage. Sci. 11 (2003) 455–523. [Google Scholar]
  • B. Fleischmann, H. Meyr and M. Wagner, Advanced planning. In: Supply Chain Management and Advanced Planning, Springer (2008) 81–106. [Google Scholar]
  • S. Gold, S. Seuring and P. Beske, Sustainable supply chain management and inter-organizational resources: a literature review. Corporate Soc. Responsibility Environ. Manage. 17 (2010) 230–245. [Google Scholar]
  • K. Govindan, H. Soleimani and D. Kannan, Reverse logistics and closed-loop supply chain: a comprehensive review to explore the future. Eur. J. Oper. Res. 240 (2015) 603–626. [Google Scholar]
  • W. Gropp and J. Moré, Optimization environments and the NEOS Server, edited by M.Buhman Server and A. Iserles. In: Approximation Theory and Optimization. Cambridge University Press (1997) 167–182. [Google Scholar]
  • H. Hou, S. Chaudhry, Y. Chen and M. Hu, Physical distribution, logistics, supply chain management, and the material flow theory: a historical perspective. Inf. Technol. Manage. 18 (2017) 107–117. [Google Scholar]
  • A. Hübner, H. Kuhn and M. Sternbeck, Demand and supply chain planning in grocery retail: an operations planning framework. Int. J. Retail Distrib. Manage. 41 (2013) 512–530. [Google Scholar]
  • L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons (2009). [Google Scholar]
  • B. Kernighan, R. Fourer and D. Gay, AMPL: A Modeling Language for Mathematical Programming. Scientific Press, San Francisco (1993). [Google Scholar]
  • D. Ketchen and G. Hult, Bridging organization theory and supply chain management: the case of best value supply chains. J. Oper. Manage. 25 (2007) 573–580. [Google Scholar]
  • P. Kouvelis and M. Rosenblatt, A mathematical programming model for global supply chain management: conceptual approach and managerial insights. In: Supply Chain Management: Models, Applications, and Research Directions (2002) 245–277. [Google Scholar]
  • Z. Liu and A. Nagurney, Multiperiod competitive supply chain networks with inventorying and a transportation network equilibrium reformulation. Optim. Eng. 13 (2012) 471–503. [Google Scholar]
  • S. Mansouri, D. Gallear and M. Askariazad, Decision support for build-to-order supply chain management through multiobjective optimization. Int. J. Prod. Econ. 135 (2012) 24–36. [Google Scholar]
  • G. Mehmeti, A literature review on supply chain management evolution. In: Economic and Social Development: Book of Proceedings (2016) 482. [Google Scholar]
  • M. Melo, S. Nickel and F. Saldanha-Da-Gama, Facility location and supply chain management – a review. Eur. J. Oper. Res. 196 (2009) 401–412. [Google Scholar]
  • M. Moreno and J. Montagna, A multiperiod model for production planning and design in a multiproduct batch environment. Math. Comput. Model. 49 (2009) 1372–1385. [Google Scholar]
  • S. Neiro and J. Pinto, A general modeling framework for the operational planning of petroleum supply chains. Comput. Chem. Eng. 28 (2004) 871–896. [Google Scholar]
  • J. Orlin and E. Nasrabadi, 15.053 Optimization methods in management science. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA (2018). [Google Scholar]
  • A. Ortíz-Gómez, V. Rico-Ramirez and S. Hernandez-Castro, Mixed-integer multiperiod model for the planning of oilfield production. Comput. Chem. Eng. 26 (2002) 703–714. [Google Scholar]
  • G. Perakis and M. Zaretsky, Multiperiod models with capacities in competitive supply chain. Prod. Oper. Manage. 17 (2008) 439–454. [Google Scholar]
  • R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/ (2016). [Google Scholar]
  • A. Rajeev, R. Pati, S. Padhi and K. Govindan, Evolution of sustainability in supply chain management: a literature review. J. Cleaner Prod. 162 (2017) 299–314. [Google Scholar]
  • E. Schulz, S. Diaz and A. Bandoni, Supply chain optimisation in a petrochemical complex. Comput. Aided Chem. Eng. 18 (2004) 997–1002. [Google Scholar]
  • S. Seuring, A review of modeling approaches for sustainable supply chain management. Decis. Support Syst. 54 (2013) 1513–1520. [Google Scholar]
  • D. Simchi-Levi, P. Kaminsky and E. Simchi-Levi, Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies, 4th edition. McGraw-Hill Education (2019). [Google Scholar]
  • H. Stadtler, Supply chain management and advanced planning – basics, overview and challenges. Eur. J. Oper. Res. 163 (2005) 575–588. [Google Scholar]
  • J. Stock and S. Boyer, Developing a consensus definition of supply chain management: a qualitative study. Int. J. Phys. Distrib. Logistics Manage. 39 (2009) 690–711. [Google Scholar]
  • A. Teixeira, E. Cost e Silva, C. Lopes and J. Santos, Supply chain purchasing domain optimization in a portuguese retail company. Springer Proc. Math. Stat. 278 (2019) 199–214. [Google Scholar]
  • J. Wang and Y. Shu, Fuzzy decision modeling for supply chain management. Fuzzy Sets and Systems 150 (2005) 107–127. [Google Scholar]
  • Y. Zhao, R and Data Mining: Examples and Case Studies. Academic Press (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.