Free Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 979 - 996
DOI https://doi.org/10.1051/ro/2021051
Published online 07 May 2021
  • S. Baillargeon and L. Rivest, The construction of stratified designs in R with the package stratification. Surv. Methodol. 37 (2011) 53–65. [Google Scholar]
  • M. Ballin and G. Barcaroli, Joint determination of optimal stratification and sample allocation using genetic algorithm. Surv. Methodol. 39 (2013) 369–393. [Google Scholar]
  • J.A.M. Brito, L. Ochi, F.M.T. Montenegro and N. Maculan, An iterative local search approach applied to the optimal stratification problem. Int. Trans. Oper. Res. 17 (2010) 753–764. [Google Scholar]
  • J.A.M. Brito, P.L.N. Silva, G.S. Semaan and N. Maculan, Integer programming formulations applied to optimal allocation in stratified sampling. Surv. Methodol. 41 (2015) 427–442. [Google Scholar]
  • J. Brito, G. Semaan, A. Fadel and L. Brito, An optimization approach applied to the optimal stratification problem. Commun. Stat. Simul. Comput. 46 (2017) 4491–4451. [Google Scholar]
  • J. Brito, T. Veiga and P. Silva, An optimisation algorithm applied to the one-dimensional stratification problem. Surv. Methodol. 45 (2019) 295–315. [Google Scholar]
  • R. Chambers and R. Dunstan, Estimating distribution functions from survey data. Biometrika 73 (1986) 597–604. [Google Scholar]
  • W.G. Cochran, Samppling Techniques, 3rd edition. Wiley Series in Probability and Statistics (2007). [Google Scholar]
  • T. Dalenius, The problem of optimum stratification. Skandinavisk Aktuarietidskrift 1950 (1950) 203–213. [Google Scholar]
  • T. Dalenius and J. Hodges, Minimum variance stratification. J. Am. Stat. Assoc. 285 (1959) 88–101. [Google Scholar]
  • F. Danish, A mathematical programming approach for obtaining optimum strata boundaries using two auxiliary variables under proportional allocation. Stat. Trans. New Ser. 19 (2018) 507–526. [Google Scholar]
  • F. Danish and S. Rizvi, Optimum stratification in bivariate auxiliary variables under neyman allocation. J. Mod. Appl. Stat. Methods 17 (2018) 2–24. [Google Scholar]
  • F. Danish, S. Rizvi, M. Jeelani and J. Reshi, Obtaining strata boundaries under proportional allocation with varying cost of every unit. Pak. J. Stat. Oper. Res. 13 (2017) 567. [Google Scholar]
  • F. Danish, S. Rizvi, M.K. Sharma, M.I. Jeelani, B. Kumar and Q.F. Dar, Optimum stratification for two stratifying variables. Rev. Invest. Oper. 40 (2019) 562–573. [Google Scholar]
  • G. Ekman, An approximation useful in univariate stratification. Ann. Math. Stat. 30 (1959) 219–229. [Google Scholar]
  • G. Glasser, On the complete coverage of large units in a statistical study. Rev. Int. Stat. Inst. 30 (1962) 28–32. [Google Scholar]
  • F. Glover and G.A. Kochenberger, Handbook of Metaheuristics. Springer (2003). [Google Scholar]
  • P. Gunning and J.M. Horgan, A new algorithm for the construction of stratum boundaries in skewed populations. Surv. Methodol. 30 (2004) 159–166. [Google Scholar]
  • J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, 3rd edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2011). [Google Scholar]
  • P. Hansen and N. Mladenović, Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130 (2001) 449–467. [Google Scholar]
  • P. Hansen, N. Mladenović and D. Perez-Brito, Variable neighborhood decomposition search. J. Heuristics 7 (2001) 335–350. [Google Scholar]
  • D. Hedlin, A procedure for stratification by an extended Ekman rule. J. Official Stat. 16 (2000) 15–29. [Google Scholar]
  • M.A. Hidiroglou, The construction of a self-representing stratum of large units in survey design. Am. Stat. 40 (1986) 27–31. [Google Scholar]
  • M. Hidiroglou and M. Kozak, Stratification of skewed populations: a comparison of optimisation-based versus approximate methods. Int. Stat. Rev. 86 (2018) 87–105. [Google Scholar]
  • T. Keskintürk and S. Er, A genetic algorithm approach to determine stratum boundaries and sample sizes of each stratum in stratified sampling. Comput. Stat. Data Anal. 52 (2007) 53–67. [Google Scholar]
  • M. Khan, N. Nand and N. Ahmad, Determining the optimum strata boundary points using dynamic programming. Surv. Methodol. 34 (2008) 205–214. [Google Scholar]
  • L. Kish, Survey Sampling. Wiley New York, Chichester (1965). [Google Scholar]
  • M. Kozak, Optimal stratification using random search method in agricultural surveys. Stat. Trans. 6 (2004) 797–806. [Google Scholar]
  • M. Kozak, Multivariate sample allocation: application of a random search method. Stat. Trans. 7 (2006) 889–900. [Google Scholar]
  • M. Kozak, Comparison of random search method and genetic algorithm for stratification. Commun. Stat. Simul. Comput. 43 (2014) 249–253. [Google Scholar]
  • M. Kozak and M.R. Verma, Geometric versus optimization approach to stratification: a comparison of efficiency. Surv. Methodol. 32 (2006) 157–163. [Google Scholar]
  • M. Kozak, M.R. Verma and A. Zieliński, Modern approach to optimum stratification: review and perspectives. Stat. Trans. 8 (2007) 223–250. [Google Scholar]
  • P. Lavallée and M.A. Hidiroglou, On the stratification of skewed populations. Surv. Methodol. 14 (1988) 33–43. [Google Scholar]
  • B. Lednicki and R. Wieczorkowski, Optimal stratification and sample allocation between subpopulations and strata. Stat. Trans. 6 (2003) 287–305. [Google Scholar]
  • J. Lisic, H. Sang, Z. Zhu and S. Zimmer, Optimal stratification and allocation for the june agricultural survey. J. Official Stat. 34 (2018) 121–148. [Google Scholar]
  • S.L. Lohr, Sampling: Design and Analysis, 2nd edition. Chapman and Hall/CRC (2019). [Google Scholar]
  • D. Rao, M. Khan and K. Reddy, Optimum stratification of a skewed population. Int. J. Math. Comput. Sci. 8 (2014) 492–495. [Google Scholar]
  • K. Reddy and M. Khan, Optimal stratification in stratified designs using weibull-distributed auxiliary information. Commun. Stat. Theory Methods 48 (2019) 3136–3152. [Google Scholar]
  • K. Reddy and M. Khan, stratifyR: an R package for optimal stratification and sample allocation for univariate populations. Aust. New Zealand J. Stat. 62 (2020) 383–405. [Google Scholar]
  • K. Reddy, M. Khan and S. Khan, Optimum strata boundaries and sample sizes in health surveys using auxiliary variables. PLoS ONE 13 (2018) e0194787. [PubMed] [Google Scholar]
  • L. Rivest, A generalization of the Lavallé and Hidiroglou algorithm for stratification in business surveys. Surv. Methodol. 28 (2002) 191–198. [Google Scholar]
  • S. Ross, A First Course in Probability, 10th edition. Pearson (2018). [Google Scholar]
  • V. Sethi, A note on the optimum stratification of populations for estimating the population means. Aust. J. Stat. 5 (1963) 20–33. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.