Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 355 - 393
DOI https://doi.org/10.1051/ro/2021005
Published online 23 March 2021
  • O. Barndorff-Nielsen, Information and Exponential Families: In Statistical Theory. John Wiley & Sons (1978). [Google Scholar]
  • J. Borwein and A. Lewis, Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29 (1991) 325–338. [Google Scholar]
  • J. Borwein and A. Lewis, Partially-finite programming in L1 and the existence of maximum entropy estimates. SIAM J. Optim. 3 (1993) 248–267. [Google Scholar]
  • L.M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7 (1967) 200–217. [Google Scholar]
  • M. Broniatowski and A. Keziou, Minimization of divergences on sets of signed measures. Stud. Sci. Math. Hung. 43 (2006) 403–442. [Google Scholar]
  • I. Csiszár, I-divergence geometry of probability distributions and minimization problems. Ann. Probab. (1975) 146–158. [Google Scholar]
  • I. Csiszár, Sanov property, generalized I-projection and a conditional limit theorem. Ann. Probab. (1984) 768–793. [Google Scholar]
  • I. Csiszár, Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19 (1991) 2032–2066. [Google Scholar]
  • I. Csiszár, Generalized projections for non-negative functions. Acta Math. Hung. 68 (1995) 161–186. [Google Scholar]
  • I. Csiszár, F. Gamboa and E. Gassiat, MEM pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inf. Theory 45 (1999) 2253–2270. [Google Scholar]
  • D. Dacunha-Castelle and F. Gamboa, Maximum d’entropie et problème des moments. Ann. Inst. Henri Poincaré Probab. Stat. 26 (1990) 567–596. [Google Scholar]
  • A. Dembo and O. Zeitouni, Large deviations techniques and applications. In: Vol. 38 of Stochastic Modelling and Applied Probability. Corrected reprint of the second (1998) edition. Springer-Verlag, Berlin (2010). [Google Scholar]
  • F. Gamboa, Maximum d’entropie sur la moyenne. Ph.D. thesis, Université d’Orsay (1989). [Google Scholar]
  • F. Gamboa and E. Gassiat, Maximum d’entropie et probléme des moments: cas multidimensionnel. Probab. Math. Stat. 12 (1991) 67–83. [Google Scholar]
  • F. Gamboa and E. Gassiat, Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Stat. 25 (1997) 328–350. [Google Scholar]
  • B. Jansson, Computer operated methods for equilibrium calculations and evaluation of thermochemical model parameters. Ph.D. thesis, Royal Institute of Technology (1984). [Google Scholar]
  • J.H.B. Kemperman, Moment problems with convexity conditions, edited by J.S. Rustagi. In: Optimizing Methods in Statistics. Academic Press (1971). [Google Scholar]
  • C. Leonard, Minimizers of energy functionals. Acta Math. Hung. 93 (2001) 281–325. [Google Scholar]
  • C. Leonard, Minimizers of energy functional under not very integrable constraints. J. Convex Anal. 10 (2003) 63–88. [Google Scholar]
  • F. Liese and I. Vajda, Convex Statistical Distances. Teubner (1987). [Google Scholar]
  • Z.-K. Liu, First-principles calculations and CALPHAD modeling of thermodynamics. J. Phase Equilib. Diffus. 30 (2009) 517. [Google Scholar]
  • H.L. Lukas, S.G. Fries and B. Sundman, Computational Thermodynamics: The CALPHAD Method. Cambridge University Press (2007) 663969016. [Google Scholar]
  • J. Navaza, On the maximum-entropy estimate of the electron density function. Acta Crystallogr. Sect. A 41 (1985) 232–244. [Google Scholar]
  • O. Nikodym, Sur une généralisation des intégrales de M. J. Radon. Fundam. Math. 15 (1930) 131–179. [Google Scholar]
  • H. Okamoto, M.E. Schlesinger and E.M. Mueller, Alloy Phase Diagrams. In Vol 3 of ASM Handbook. ASM International (2016). [Google Scholar]
  • J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen. Hölder (1913) 39514488. [Google Scholar]
  • R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). [Google Scholar]
  • R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer-Verlag (1998). [Google Scholar]
  • J. Shore and R. Johnson, Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 26 (1980) 26–37. [Google Scholar]
  • P.J. Spencer, A brief history of CALPHAD. CALPHAD 32 (2008) 1–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.