Free Access
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 395 - 413
Published online 23 March 2021
  • K. Abalo and M. Kostreva, Some existence theorems of nash and berge equilibria. Appl. Math. Lett. 17 (2004) 569–573. [Google Scholar]
  • K. Abalo and M. Kostreva, Berge equilibrium: some recent results from fixed-point theorems. Appl. Math. Comput. 169 (2005) 624–638. [Google Scholar]
  • J.E. Abdou, E. Safatly, B. Nakhle and A. El Khoury, High-dimensional nash equilibria problems and tensors applications. Int. Game Theory Rev. 19 (2017) 1750015. [Google Scholar]
  • B.W. Bader, T.G. Kolda, et al. Matlab tensor toolbox version 2.6. Available online (2015). [Google Scholar]
  • C. Berge, Théorie générale des jeux à n personnes. In Vol. 138 of Mémorial des sciences mathématiques. Gauthier-Villars (1957). [Google Scholar]
  • R. Bishop and S. Goldberg, Tensor analysis on manifolds. Dover Books on Mathematics. Dover Publications (1968). [Google Scholar]
  • B.R. Cobb and T. Sen, Finding mixed strategy nash equilibria with decision trees. Int. Rev. Econ. Edu. 15 (2014) 43–50. [Google Scholar]
  • A.M. Colman, T.W. Körner, O. Musy and T. Tazdaït, Mutual support in games: some properties of berge equilibria. J. Math. Psychol. 55 (2011) 166–175. [Google Scholar]
  • H.W. Corley, A mixed cooperative dual to the nash equilibrium. Game Theory 2015 (2015) 7. [Google Scholar]
  • P. Courtois, R. Nessah and T. Tazdaït, How to play games? Nash versus berge behaviour rules. Econ. Philos. 31 (2015) 123–139. [Google Scholar]
  • P. Courtois, R. Nessah and T. Tazdaït, Existence and computation of berge equilibrium and of two refinements. J. Math. Econ. 72 (2017) 7–15. [Google Scholar]
  • B. Crettez, A new sufficient condition for a berge equilibrium to be a Berge-Vaisman equilibrium. J. Quant. Econ. 15 (2017) 451–459. [Google Scholar]
  • B. Crettez, On sugden’s ``mutually beneficial practice’’ and berge equilibrium. Int. Rev. Econ. 64 (2017) 357–366. [Google Scholar]
  • B. Crettez, Unilateral support equilibrium, berge equilibrium, and team problems solutions. J. Quant. Econ. 17 (2019) 727–739. [Google Scholar]
  • B. Crettez and R. Nessah, On the existence of unilateral support equilibrium. Math. Soc. Sci. 105 (2020) 41–47. [Google Scholar]
  • D. Fudenberg and J. Tirole, Game Theory. MIT Press, Cambridge, MA, USA (1991). [Google Scholar]
  • R. Gibbons, Game Theory for Applied Economists. Princeton University Press, Princeton, NJ, USA (1992). [Google Scholar]
  • Z.-H. Huang and L. Qi, Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66 (2017) 557–576. [Google Scholar]
  • H.A.L. Kiers, Towards a standardized notation and terminology in multiway analysis. J. Chemom. 14 (2000) 105–122. [Google Scholar]
  • T.G. Kolda and B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51 (2009) 455–500. [Google Scholar]
  • M. Larbani and R. Nessah, A note on the existence of berge and berge-nash equilibria. Math. Soc. Sci. 55 (2008) 258–271. [Google Scholar]
  • Y. Li, Centering, trust region, reflective techniques for nonlinear minimization subject to bounds. Technical report, Ithaca, NY, USA (1993). [Google Scholar]
  • O. Musy, A. Pottier and T. Tazdaït, A new theorem to find berge equilibria. Int. Game Theory Rev. 14 (2012) 1250005. [Google Scholar]
  • J.F. Nash, Equilibrium points in n-person games. Proc. Nat. Acad. Sci. 36 (1950) 48–49. [Google Scholar]
  • R. Nessah and M. Larbani, Berge-Zhukovskii equilibria: existence and characterization. Int. Game Theory Rev. 16 (2014) 1450012. [Google Scholar]
  • R. Nessah, M. Larbani and T. Tazdaït, A note on berge equilibrium. Appl. Math. Lett. 20 (2007) 926–932. [Google Scholar]
  • J.V. Neumann and O. Morgenstern, Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, USA (1944). [Google Scholar]
  • M.J. Osborne and A. Rubinstein, A Course in Game Theory. MIT Press, Cambridge, MA, USA (1994). [Google Scholar]
  • E. Safatly and J.E. Abdou, Locating pure and mixed berge equilibria using tensor form. Submitted (2019). [Google Scholar]
  • J. Schouten, P. Borm and R. Hendrickx, Unilateral support equilibria. J. Math. Psychol. 93 (2019). [Google Scholar]
  • C. Semay and B. Silvestre-Brac, Introduction au calcul tensoriel: Applications à la physique. Sciences sup. Dunod (2007). [Google Scholar]
  • R.L. Trivers, The evolution of reciprocal altruism. Q. Rev. Biol. 46 (1971) 35–57. [Google Scholar]
  • V.I. Zhukovskii, Some problems of nonantagonistic differential games. In Matematiceskie Metody v Issledovanii Operacij [Mathematical Methods in Operations Research] Edited by P. Kenderov. Bulgarian Academy of Sciences (1985) 103–195. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.