Free Access
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1171 - 1195
Published online 11 May 2021
  • A. Adhikari, A. Bisi and B. Avittathur, Coordination mechanism, risk sharing, and risk aversion in a five-level textile supply chain under demand and supply uncertainty. Eur. J. Oper. Res. 282 (2020) 93–107. [Google Scholar]
  • A. Ait-Alla, M. Teucke, M. Lütjen, S. Beheshti-Kashi and H.R. Karimi, Robust production planning in fashion apparel industry under demand uncertainty via conditional value at risk. Math. Prob. Eng. (2014) 1–10. [Google Scholar]
  • V.A. Armentano, A.L. Shiguemoto and A. Løkketangen, Tabu search with path relinking for an integrated production–distribution problem. Comput. Oper. Res. 38 (2011) 1199–1209. [Google Scholar]
  • K.F. Au, T.M. Choi and Y. Yu, Fashion retail forecasting by evolutionary neural networks. Int. J. Prod. Econ. 114 (2008) 615–630. [Google Scholar]
  • S. Berbain, R. Bourbonnais and P. Vallin, Spécificités et problématiques des produits à durée de vie courte. In: Proceeding of the 8th International conference on Logistics and SCM Research. RIRL 2010, Bordeaux (2010). [Google Scholar]
  • M. Boudia and C. Prins, A memetic algorithm with dynamic population management for an integrated production–distribution problem. Eur. J. Oper. Res. 195 (2009) 703–715. [Google Scholar]
  • Z.L. Chen, Integrated production and outbound distribution scheduling: review and extensions. Oper. Res. 58 (2010) 130–148. [Google Scholar]
  • Z.L. Chen and G.L. Vairaktarakis, Integrated scheduling of production and distribution operations. Manage. Sci. 51 (2005) 614–628. [Google Scholar]
  • C. Ching-Chin, A.I.K. Ieng, W. Ling-Lang and K. Ling-Chieh, Designing a decision-support system for new product sales forecasting. Expert Syst. App. 37 (2010) 1654–1665. [Google Scholar]
  • S. Chopra and P. Meindl, Supply Chain Management: Strategy, Planning and Operation, 6th edition. Pearson Education (2016). [Google Scholar]
  • F. Darvishi, R.G. Yaghin and A. Sadeghi, Integrated fabric procurement and multi-site apparel production planning with cross-docking: a hybrid fuzzy-robust stochastic programming approach. Appl. Soft Comput. 92 (2020) 106–267. [Google Scholar]
  • B. Fahimnia, R.Z. Farahani, R. Marian and L. Luong, A review and critique on integrated production–distribution planning models and techniques. J. Manuf. Syst. 32 (2013) 1–19. [Google Scholar]
  • P. Farahani, M. Grunow and H.O. Günther, Integrated production and distribution planning for perishable food products. Flexible Serv. Manuf. J. 24 (2012) 28–51. [Google Scholar]
  • H. Felfel, O. Ayadi and F. Masmoudi, Multi-stage stochastic supply chain planning in textile and apparel industry under demand uncertainty with risk considerations. Int. J. Serv. Oper. Manage. 29 (2018) 289–311. [Google Scholar]
  • A. Ghasemi Bijaghini and S.M. SeyedHosseini, A new Bi-level production-routing-inventory model for a medicine supply chain under uncertainty. Int. J. Data Network Sci. 2 (2018) 15–26. [Google Scholar]
  • D. Ghosh and S. Mondal, An integrated production–distribution planning of dairy industry – a case study. Int. J. Logistics Syst. Manage. 30 (2018) 225–245. [Google Scholar]
  • A.P. Kanyalkar and G.K. Adil, An integrated aggregate and detailed planning in a multi-site production environment using linear programming. Int. J. Prod. Res. 43 (2005) 4431–4454. [Google Scholar]
  • B.B. Keskin and H. Üster, Meta-heuristic approaches with memory and evolution for a multi-product production/distribution system design problem. Eur. J. Oper. Res. 182 (2007) 663–6820. [Google Scholar]
  • Y. Kim, C. Yun, S. Bin Park, S. Park and L.T. Fan, An integrated model of supply Network and production planning for multiple fuel products of multi-site refineries. Comput. Chem. Eng. 32 (2008) 2529–2535. [Google Scholar]
  • A.A. Kurawarwala and H. Matsuo, Forecasting and Inventory Management of Short Life-Cycle Products. Oper. Res. 44 (1996) 131–150. Special Issue on New Directions in Operations Management. [Google Scholar]
  • H. Li, G. Pedrielli, L.H. Lee and E.P. Chew, Enhancement of supply chain resilience through inter-echelon information sharing. Flexible Serv. Manuf. J. 29 (2017) 260–285. [Google Scholar]
  • Y. Li, F. Chu, C. Feng, C. Chu and M. Zhou, Integrated production inventory routing planning for intelligent food logistics systems. IEEE Trans. Intell. Trans. Syst. 20 (2019) 867–878. [Google Scholar]
  • S. Liu and L.G. Papageorgiou, Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. Omega 41 (2013) 369–382. [Google Scholar]
  • S.H. Liao, C.L. Hsieh and W.C. Ho, Multi-objective evolutionary approach for supply chain network design problem within online customer consideration. RAIRO:OR 51 (2017) 135–155. [Google Scholar]
  • S. Moons, K. Ramaekers and A. Caris, Integrated production–distribution models: a state of the art. In: 29th Conference of the Belgian operational Research Society (2015). [Google Scholar]
  • J. Morrison, How to use diffusion models in new product forecasting. J. Bus. Forecasting Methods Syst. 15 (1996) 6–9. [Google Scholar]
  • J. Mostard, R. Teunter and R. De Koster, Forecasting demand for single-period products: a case study in the apparel industry. Eur. J. Oper. Res. 211 (2011) 139–147. [Google Scholar]
  • J. Mula, D. Peidro, M. Daz-Madroñero and E. Vicens, Mathematical programming models for supply chain production and transport planning. Eur. J. Oper. Res. 204 (2010) 377–390. [Google Scholar]
  • M.E. Nenni, L. Giustiniano and L. Pirolo, Demand forecasting in the fashion industry: a review. To appear in: Int. J. Eng. Bus. Manage. (2013). DOI: 10.5772/56840. [Google Scholar]
  • G. Pundoor and Z.L. Chen, Joint cyclic production and delivery scheduling in a two-stage supply chain. Int. J. Prod. Econ. 119 (2009) 55–74. [Google Scholar]
  • K. Ratna Kumar, T. Radha Ramanan and S.R. Anand Abraham, Integrated production distribution problem in a partial backorder and order refusal environment. Int. J. Manage. Concepts Phil. 12 (2019) 296–311. [Google Scholar]
  • F. Rømo, A. Tomasgard, L. Hellemo, M. Fodstad, B.H. Eidesen and B. Pedersen, Optimizing the Norwegian Natural gas production and transport. Interfaces 39 (2009) 46–56. [Google Scholar]
  • R. Russell, W.-C. Chiang and D. Zepeda, Integrating multi-product production and distribution in newspaper logistics. Comput. Oper. Res. 35 (2008) 1576–1588. [Google Scholar]
  • I. Safra, A. Jebali, Z. Jemai, H. Bouchriha and A. Ghaffari, Capacity planning in Textile and apparel supply chains. IMA J. Manage. Math. 30 (2019) 209–233. [Google Scholar]
  • S. Sarkar and B.C. Giri, A vendor–buyer integrated inventory system with variable lead time and uncertain market demand. Oper. Res. 20 (2020) 491–515. [Google Scholar]
  • S. Sarkar, B.C. Giri and A.K. Sarkar, A vendor–buyer inventory model with lot-size and production rate dependent lead time under time value of money. RAIRO:OR 54 (2020) 961–979. [CrossRef] [Google Scholar]
  • H. Selim, C. Araz and I. Ozkarahan, Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transp. Res. Part E-Logistics Transp. Rev. 44 (2008) 396–419. [Google Scholar]
  • A. Sen and A.X. Zhang, Style goods pricing with demand learning. Eur. J. Oper. Res. 196 (2009) 1058–1075. [Google Scholar]
  • R. Sousa, N. Shah and L.G. Papageorgiou, Supply chain design and multilevel planning-An industrial case. Comput. Chem. Eng. 32 (2008) 2643–2663. [Google Scholar]
  • M.W. Suh, E.K. Lee and M.T. Holt, Estimation of consumer demands: an application to US apparel expenditures. J. Textile Apparel 1 (2000) 1–9. [Google Scholar]
  • S. Thomassey, M. Happiette and J.M. Castelain, An automatic textile sales forecast using fuzzy treatment of explanatory variables. J. Textile Apparel Technol. Manage. 2 (2002) 1–12. [Google Scholar]
  • S. Thomassey, M. Happiette and J.M. Castelain, A global forecasting support system adapted to textile distribution. Int. J. Prod. Econ. 96 (2005) 81–95. [Google Scholar]
  • P. Tsiakis and L.G. Papageorgiou, Optimal production allocation and distribution supply chain networks. Int. J. Prod. Econ. 111 (2007) 468–483. [Google Scholar]
  • X. Wen, T.-M. Choi and S.-H. Chung, Fashion retail supply chain management: a review of operational models. Int. J. Prod. Econ. 207 (2019) 34–55. [Google Scholar]
  • J. Wu, X. Zhai, C. Zhang and X. Liu, Sharing quality information in a dual-supplier network: a game theoretic perspective. Int. J. Prod. Res. 49 (2010) 199–214. [Google Scholar]
  • T. Yang and W. Fan, Information management strategies and supply chain performance under demand disruptions. Int. J. Prod. Res. 54 (2016) 8–27. [Google Scholar]
  • Y. Yu, Sales forecasting using extreme learning machine with applications in fashion retailing. Decis. Support Syst. 46 (2008) 411–419. [Google Scholar]
  • Y. Yu, T. Choi and C. Hui, An intelligent fast sales forecasting model for fashion products. Expert Syst. App. 38 (2011) 7373–7379. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.