Free Access
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1971 - 2000
Published online 28 June 2021
  • O. Abdolazimi, M.S. Esfandarani, M. Salehi and D. Shishebori, Robust design of a multi-objective closed-loop supply chain by integrating on-time delivery, cost, and environmental aspects, case study of a Tire Factory. J. Cleaner Prod. 121566 (2020) 1–15. [Google Scholar]
  • M. Al Hail, W. Elkassem, A. Hamad, P. Abdulrouf, B. Thomas and D. Stewart, Overview of pharmacovigilance practices at the largest academic healthcare system in the State of Qatar. Int. J. Clinical Pharmacy 40 (2018) 769–774. [Google Scholar]
  • M.H. Alavidoost, M. Tarimoradi and M.F. Zarandi, Bi-objective mixed-integer nonlinear programming for multi-commodity tri-echelon supply chain networks. J. Intel. Manuf. 29 (2018) 809–826. [Google Scholar]
  • Z. Asim, S.A. Jalil and S. Javaid, An uncertain model for integrated production-transportation closed-loop supply chain network with cost reliability. Sustainable Prod. Consumption 17 (2019) 298–310. [Google Scholar]
  • H. Attari and S.H. Nasseri, New concepts of feasibility and efficiency of solutions in fuzzy mathematical programming problems. Fuzzy Inf. Eng. 6 (2014) 203–221. [Google Scholar]
  • G.K. Badhotiya, G. Soni and M.L. Mittal, Fuzzy multi-objective optimization for multi-site integrated production and distribution planning in two echelon supply chain. Int. J. Adv. Manuf. Technol. 102 (2019) 635–645. [Google Scholar]
  • M.M. Billal and M. Hossain, Multi-objective optimization for multi-product multi-period four Echelon supply chain problems under uncertainty. J. Optim. Ind. Eng. 13 (2020) 1–17. [Google Scholar]
  • T. Cal, Post Optimal Analysis, Parametric Programming and Related Topics. De gruyter, New York (1995). [Google Scholar]
  • Y. Cardona-Valdés, A. Álvarez and J. Pacheco, Meta-heuristic procedure for a bi-objective supply chain design problem with uncertainty. Transp. Res. Part B: Methodological 60 (2014) 66–84. [Google Scholar]
  • D. Darvishi, S. Liu and S.H. Nasseri, A new approach in animal diet using grey system theory. Grey Syst.: Theory App. 8 (2018) 167–180. [Google Scholar]
  • A.K. Das and D.K. Pratihar, A novel approach for neuro-fuzzy system-based multi-objective optimization to capture inherent fuzziness in engineering processes. Knowl.-Based Syst. 175 (2019) 1–11. [Google Scholar]
  • A. Diabat, A. Jabbarzadeh and A. Khosrojerdi, A perishable product supply chain network design problem with reliability and disruption considerations. Int. J. Prod. Econ. 212 (2019) 125–138. [Google Scholar]
  • M.B. Fakhrzad and F. Goodarzian, A fuzzy multi-objective programming approach to develop a green closed-loop supply chain network design problem under uncertainty: modifications of imperialist competitive algorithm. RAIRO:OR 53 (2019) 963–990. [Google Scholar]
  • M.B. Fakhrzad, P. Talebzadeh and F. Goodarzian, Mathematical formulation and solving of green closed-loop supply chain planning problem with production, distribution and transportation reliability. Int. J. Eng. 31 (2018) 2059–2067. [Google Scholar]
  • M.B. Fakhrzad, F. Goodarzian and A.M. Golmohammadi, Addressing a fixed charge transportation problem with multi-route and different capacities by novel hybrid meta-heuristics. J. Ind. Syst. Eng. 12 (2019) 167–184. [Google Scholar]
  • A.M. Fathollahi-Fard, A. Ahmadi, F. Goodarzian and N. Cheikhrouhou, A bi-objective home healthcare routing and scheduling problem considering patients’ satisfaction in a fuzzy environment. Appl. Soft Comput. 93 (2020). [Google Scholar]
  • C. Feng, Y. Ma, G. Zhou and T. Ni, Stackelberg game optimization for integrated production-distribution-construction system in construction supply chain. Knowl.-Based Syst. 157 (2018) 52–67. [Google Scholar]
  • J. Ghahremani-Nahr, R. Kian and E. Sabet, A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert Syst. App. 116 (2019) 454–471. [Google Scholar]
  • F. Goodarzian and H. Hosseini-Nasab, Applying a fuzzy multi-objective model for a production-distribution network design problem by using a novel self-adoptive evolutionary algorithm. Int. J. Syst. Sci.: Oper. Logistics (2019) 1–22. [Google Scholar]
  • F. Goodarzian, H. Hosseini Nasab and M.B. Fakhrzad, A multi-objective sustainable medicine supply chain network design using a novel hybrid multi-objective metaheuristic algorithm. Int. J. Eng. 33 (2020) 1986–1995. [Google Scholar]
  • F. Goodarzian, H. Hosseini-Nasab, J. Muñuzuri and M.B. Fakhrzad, A multi-objective pharmaceutical supply chain network based on a robust fuzzy model: a comparison of meta-heuristics. Appl. Soft Comput. 92 (2020) 106331. [Google Scholar]
  • S. Jalali, M. Seifbarghy, J. Sadeghi and S. Ahmadi, Optimizing a bi-objective reliable facility location problem with adapted stochastic measures using tuned-parameter multi-objective algorithms. Knowl.-Based Syst. 95 (2016) 45–57. [Google Scholar]
  • S.F. Ji, X.S. Peng and R.J. Luo, An integrated model for the production-inventory-distribution problem in the Physical Internet. Int. J. Prod. Res. 57 (2019) 1000–1017. [Google Scholar]
  • S. Karmakar and P. Mujumdar, Grey fuzzy optimization model for water quality management of a river system. Adv. Water Res. 29 (2006) 1088–1105. [Google Scholar]
  • S. Khalifehzadeh and M.B. Fakhrzad, A modified firefly algorithm for optimizing a multi stage supply chain network with stochastic demand and fuzzy production capacity. Comput. Ind. Eng. 133 (2019) 42–56. [Google Scholar]
  • S. Khalifehzadeh, M. Seifbarghy and B. Naderi, Solving a fuzzy multi objective model of a production–distribution system using meta-heuristic based approaches. J. Intell. Manuf. 28 (2017) 95–109. [Google Scholar]
  • A. Khanna, A. Kishore, B. Sarkar and C.K. Jaggi, Inventory and pricing decisions for imperfect quality items with inspection errors, sales returns, and partial backorders under inflation. RAIRO:OR 54 (2020) 287–306. [Google Scholar]
  • J. Li, X. Zeng, C. Liu and X. Zhou, A parallel Lagrange algorithm for order acceptance and scheduling in cluster supply chains. Knowl.-Based Syst. 143 (2018) 271–283. [Google Scholar]
  • S.F. Liu and Y. Lin, Grey Information, Theory and Practical Applications. Springer (2006). [Google Scholar]
  • S.F. Liu and Y. Lin, Grey Systems: Theory and Applications. Springer-Verlag, Berlin (2011). [Google Scholar]
  • S. Liu and L.G. Papageorgiou, Multi objective optimization of production, distribution and capacity planning of global supply chains in the process industry. Omega 41 (2013) 369–382. [Google Scholar]
  • S.F. Liu and N. Xie, Grey Systems Theory and its Applications. The Science Press of China, Beijing (2013). [Google Scholar]
  • X. Liu and D. Zhang, An improved SPEA2 algorithm with local search for multi-objective investment decision-making. Appl. Sci. 9 (2019) 1675. [Google Scholar]
  • Y. Liu, H. Qin, L. Mo, Y. Wang, D. Chen, S. Pang and X. Yin, Hierarchical flood operation rules optimization using multi-objective cultured evolutionary algorithm based on decomposition. Water Res. Manage. 33 (2019) 337–354. [Google Scholar]
  • Z. Liu, S. Qu, M. Goh, R. Huang and S. Wang, Optimization of fuzzy demand distribution supply chain using modified sequence quadratic programming approach. J. Intel. Fuzzy Syst. 36 (2019) 6167–6180. [Google Scholar]
  • Q. Long, A multi-methodological collaborative simulation for inter-organizational supply chain networks. Knowl.-Based Syst. 96 (2016) 84–95. [Google Scholar]
  • A. Megahed and M. Goetschalckx, A modeling framework and local search solution methodology for a production-distribution problem with supplier selection and time-aggregated quantity discounts. Appl. Math. Model. 68 (2019) 198–218. [Google Scholar]
  • M.R. Mohammadi, M. Abedini and B. Rashidi, An adaptive multi-objective optimization method for optimum design of distribution networks. Eng. Optim. 52 (2020) 194–217. [Google Scholar]
  • R.E. Moore, R.B. Kearfott and M.J. Cloud, Introduction to Interval Analysis. SIAM Press, Philadelphia (2009). [Google Scholar]
  • B. Naderi, K. Govindan and H. Soleimani, A Benders decomposition approach for a real case supply chain network design with capacity acquisition and transporter planning: wheat distribution network. Ann. Oper. Res. 291 (2020) 685–705. [Google Scholar]
  • S.H. Nasseri and S. Bavandi, Amelioration of Verdegay’s approach for fuzzy linear programs with stochastic parameters. Iran. J. Manage. Stud. (IJMS) 11 (2018) 71–89. [Google Scholar]
  • S.H. Nasseri and D. Darvishi, Diet modeling in uncertainty conditions using Grey Systems approach. J. Oper. Res. App. 12 (2016) 29–45. [Google Scholar]
  • S.H. Nasseri and D. Darvishi, Duality Results on grey linear programming problems. J. Grey Syst. 30 (2018) 127–142. [Google Scholar]
  • M. Nazim, M. Hashim and J. Xu, Multi objective optimization of production-distribution problem under fuzzy random environment. Global J. Technol. Optim. 5 (2014) 161. [Google Scholar]
  • R. Nourifar, I. Mahdavi, N. Mahdavi-Amiri and M.M. Paydar, Optimizing decentralized production-distribution planning problem in a multi-period supply chain network under uncertainty. J. Ind. Eng. Int. 14 (2018) 367–382. [Google Scholar]
  • M. Rabbani, R. Heidari and R. Yazdanparast, A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation. Eur. J. Oper. Res. 272 (2019) 945–961. [Google Scholar]
  • H. Rafiei, F. Safaei and M. Rabbani, Integrated production-distribution planning problem in a competition-based four-echelon supply chain. Comput. Ind. Eng. 119 (2018) 85–99. [Google Scholar]
  • Z. Rafie-Majd, S.H.R. Pasandideh and B. Naderi, Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm. Comput. Chem. Eng. 109 (2018) 9–22. [Google Scholar]
  • S.J. Sadjadi and A. Alirezaee, Impact of pricing structure on supply chain coordination with cooperative advertising. RAIRO:OR 54 (2020) 1613–1629. [Google Scholar]
  • N. Sahebjamnia, F. Goodarzian and M. Hajiaghaei-Keshteli, Optimization of multi-period three-echelon citrus supply chain problem. J. Optim Ind. Eng. (2020) 41–50. [Google Scholar]
  • U. Sakalli and I. Atabas, Ant colony optimization and genetic algorithm for fuzzy stochastic production-distribution planning. Appl. Sci. 8 (2018) 2042. [Google Scholar]
  • J.R. Shi, S.Y. Liu and W.T. Xiong, A new solution for interval number linear programming. J. Syst. Eng. Theory Pract. 2 (2005) 101–106. [Google Scholar]
  • D. Shishebori and A. Ghaderi, An integrated approach for reliable facility location/network design problem with link disruption. Int. J. Supply Oper. Manage. 2 (2015) 640–661. [Google Scholar]
  • D. Shishebori and M.S. Jabalameli, A new integrated mathematical model for optimizing facility location and network design policies with facility disruptions. Life Sci. J. 10 (2013) 1896–1906. [Google Scholar]
  • D. Shishebori, A.Y. Babadi and Z. Noormohammadzadeh, A Lagrangian relaxation approach to fuzzy robust multi-objective facility location network design problem. Sci. Iran. Trans. E Ind. Eng. 25 (2018) 1750–1767. [Google Scholar]
  • W. Wang, Study on grey linear programming. J. Grey Syst. 9 (1997) 41–46. [Google Scholar]
  • Z.X. Wang, Correlation analysis of sequences with interval grey numbers based on the kernel and greyness degree. Kybernetes 42 (2013) 309–317. [Google Scholar]
  • D.H. Wolpert, and W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1 (1997) 67–82. [CrossRef] [Google Scholar]
  • N.M. Xie, On computational algorithms of grey numbers based on information background. Grey Syst.: Theory App. 3 (2013) 177–190. [Google Scholar]
  • N.M. Xie and S.F. Liu, A novel grey relational model based on grey number sequences. Grey Syst.: Theory App. 1 (2011) 117–128. [Google Scholar]
  • X. Yan and Z. Song, The portfolio models of contained grey profit under uncertainty. Grey Syst.: Theory Appl. 4 (2014) 487–494. [Google Scholar]
  • A.A. Zaidan, B. Atiya, M.A. Bakar and B.B. Zaidan, A new hybrid algorithm of simulated annealing and simplex downhill for solving multiple-objective aggregate production planning on fuzzy environment. Neural Comput. App. 31 (2019) 1823–1834. [Google Scholar]
  • K. Zhang, Y. Cai, S. Fu and H. Zhang, Multi objective memetic algorithm based on adaptive local search chains for vehicle routing problem with time windows. Evol. Intel. (2019) 1–12. DOI: 10.1007/s12065-019-00224-7. [Google Scholar]
  • X. Zhao and J. Dou, Bi-objective integrated supply chain design with transportation choices: a multi-objective particle swarm optimization. J. Ind. Manage. Optim. 15 (2019) 1263–1288. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.