Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1949 - 1970
DOI https://doi.org/10.1051/ro/2021084
Published online 28 June 2021
  • M. Afzalirad and J. Rezaeian, Resource-constrained unrelated parallel machine scheduling problem with sequence dependent setup times, precedence constraints and machine eligibility restrictions. Comput. Ind. Eng. 98 (2016) 40–52. [Google Scholar]
  • Z. Alipour, F. Jolai, E. Monabbati and N. Zaerpour, General lot-sizing and scheduling for perishable food products. RAIRO-Oper. Res. 54 (2020) 913–931. [EDP Sciences] [Google Scholar]
  • B. Almada-Lobo, A. Clark, L. Guimarães, G. Figueira and P. Amorim, Industrial insights into lot sizing and scheduling modeling. Pesquisa Operacional 35 (2015) 439–46. [Google Scholar]
  • C. Almeder and B. Almada-Lobo, Synchronisation of scarce resources for a parallel machine lotsizing problem. Int. J. Prod. Econ. 49 (2011) 7315–7335. [Google Scholar]
  • A.R. Clark and S.J. Clark, Rolling-horizon lot-sizing when set-up times are sequence-dependent. Int. J. Prod. Econ. 38 (2000) 2287–2307. [Google Scholar]
  • K. Copil, M. Wörbelauer, H. Meyr and H. Tempelmeier, Simultaneous lotsizing and scheduling problems: a classification and review of models. OR Spec. 39 (2017) 1–64. [Google Scholar]
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [Google Scholar]
  • G.D. Eppen and R.K. Martin, Solving multi-item capacitated lot-sizing problems using variable redefinition. Oper. Res. 35 (1987) 832–848. [Google Scholar]
  • B. Fleischmann and H. Meyr, The general lotsizing and scheduling problem. Oper. Res. Spek. 19 (1997) 11–21. [Google Scholar]
  • H.Y. Fuchigami and S. Rangel, A survey of case studies in production scheduling: Analysis and perspectives. J. Comput. Sci. 25 (2018) 425–436. [Google Scholar]
  • B. Gavish and S.C. Graves, The travelling salesman problem and related problems (1978). [Google Scholar]
  • C.H. Glock, E.H. Grosse and J.M. Ries, The lot sizing problem: A tertiary study. Int. J. Prod. Econ. 155 (2014) 39–51. [Google Scholar]
  • L. Guimarães, D. Klabjan and B. Almada-Lobo, Modeling lotsizing and scheduling problems with sequence dependent setups. Eur. J. Oper. Res. 239 (2014) 644–662. [Google Scholar]
  • M. Güngör, A.T. Ünal and Z.C. Taskn, A parallel machine lot-sizing and scheduling problem with a secondary resource and cumulative demand. Int. J. Prod. Econ. 56 (2018) 3344–3357. [Google Scholar]
  • K. Haase, Capacitated lot-sizing with sequence dependent setup costs. Oper. Res. Spek. 18 (1996) 51–59. [Google Scholar]
  • K. Haase and A. Kimms, Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities. Int. J. Prod. Econ. 66 (2000) 159–169. [Google Scholar]
  • R.J.W. James and B. Almada-Lobo, Single and parallel machine capacitated lotsizing and scheduling: New iterative mip-based neighborhood search heuristics. Comput. Oper. Res. 38 (2011) 1816–1825. [Google Scholar]
  • G.M. Kopanos, L. Puigjaner and C.T. Maravelias, Production planning and scheduling of parallel continuous processes with product families. Ind. Eng. Chem. Res. 50 (2010) 1369–1378. [Google Scholar]
  • E.L. Lawler, The traveling salesman problem: a guided tour of combinatorial optimization. Wiley-Interscience Series Discrete Mathematics (1985). [Google Scholar]
  • H. Meyr, Simultaneous lotsizing and scheduling by combining local search with dual reoptimization. Eur. J. Oper. Res. 120 (2000) 311–326. [Google Scholar]
  • H. Meyr, Simultaneous lotsizing and scheduling on parallel machines. Eur. J. Oper. Res. 139 (2002) 277–292. [Google Scholar]
  • C.E. Miller, A.W. Tucker and R.A. Zemlin, Integer programming formulation of traveling salesman problems. JACM 7 (1960) 326–329. [Google Scholar]
  • W.A. Oliveira and M.O. Santos, A new branching rule to solve the capacitated lot sizing and scheduling problem with sequence dependent setups. TEMA (São Carlos) 18 (2017) 515–529. [Google Scholar]
  • W.A.O. Soler, M.O. Santos and K. Akartunali, Mip approaches for a lot sizing and scheduling problem on multiple production lines with scarce resources, temporary workstations, and perishable products. J. Oper. Res. Soc. (2019) 1–16. [Google Scholar]
  • L.A. Wolsey, Mip modelling of changeovers in production planning and scheduling problems. Eur. J. Oper. Res. 99 (1997) 154–165. [Google Scholar]
  • J. Xiao, H. Yang, C. Zhang, L. Zheng and J.N.D. Gupta, A hybrid lagrangian-simulated annealing-based heuristic for the parallel-machine capacitated lot-sizing and scheduling problem with sequence-dependent setup times. Comput. Oper. Res. 63 (2015) 72–82. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.