Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1933 - 1948
DOI https://doi.org/10.1051/ro/2021069
Published online 28 June 2021
  • G.R. Amin and M.I. Boamah, A new inverse DEA cost efficiency model for estimating potential merger gains: a case of Canadian banks. Ann. Oper. Res. 295 (2020) 21–36. [Google Scholar]
  • G.R. Amin and A. Emrouznejad, Inverse forecasting: a new approach for predictive modeling. Comput. Ind. Eng. 53 (2007) 491–498. [Google Scholar]
  • G.R. Amin, A. Emrouznejad and S. Gattoufi, Minor and major consolidations in inverse DEA: Definition and determination. Comput. Ind. Eng. 103 (2017) 193–200. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • L. Chen, Y. Wang, F. Lai and F. Feng, An investment analysis for China’s sustainable development based on inverse data envelopment analysis. J. Clean. Prod. 142 (2017) 1638–1649. [Google Scholar]
  • W.D. Cook and L.M. Seiford, Data envelopment analysis (DEA) – Thirty years on. Eur. J. Oper. Res. 192 (2009) 1–17. [CrossRef] [Google Scholar]
  • A. Emrouznejad, G.-L. Yang and G.R. Amin, A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries. J. Oper. Res. Soc. (2018) 1–12. [Google Scholar]
  • S. Gattoufi, G.R. Amin and A. Emrouznejad, A new inverse DEA method for merging banks. IMA J. Manage. Math. 25 (2014) 73–87. [CrossRef] [Google Scholar]
  • M. Ghiyasi, Industrial sector environmental planning and energy efficiency of Iranian provinces. J. Cleaner Prod. 142 (2017) 2328–2339. [Google Scholar]
  • M. Ghiyasi, Inverse DEA based on cost and revenue efficiency. Comput. Ind. Eng. 114 (2017) 258–263. [Google Scholar]
  • S. Ghobadi and S. Jahangiri, Inverse DEA: review, extension and application. Int. J. Inf. Technol. Decis. Making 14 (2015) 805–824. [Google Scholar]
  • F. Guijarro, M. Martnez-Gómez and D. Visbal-Cadavid, A model for sector restructuring through genetic algorithm and inverse DEA. Expert Syst. App. 154 (2020) 113422. [Google Scholar]
  • A. Hadi-Vencheh and A.A. Foroughi, A generalized DEA model for inputs/outputs estimation. Math. Comput. Modell. 43 (2006) 447–457. [Google Scholar]
  • A. Hadi-Vencheh, A.A. Foroughi and M. Soleimani-Damaneh, A DEA model for resource allocation. Econ. Modell. 25 (2008) 983–993. [Google Scholar]
  • A. Hatami-Marbini, A. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur. J. Oper. Res. 214 (2011) 457–472. [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi, N. Shoja, G. Tohidi and S. Razavyan, Input estimation and identification of extra inputs in inverse DEA models. Appl. Math. Comput. 156 (2004) 427–437. [Google Scholar]
  • G.R. Jahanshahloo, A.H. Vencheh, A.A. Foroughi and R.K. Matin, Inputs/outputs estimation in DEA when some factors are undesirable. Appl. Math. Comput. 156 (2004) 19–32. [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi, N. Shoja, G. Tohidi and S. Razavyan, Sensitivity of efficiency classifications in the inverse DEA models. Appl. Mat. Comput. 169 (2005) 905–916. [Google Scholar]
  • G. Jahanshahloo, F. Hosseinzadeh Lotfi, M. Rostamy-Malkhalifeh and S. Ghobadi, Using enhanced Russell model to solve inverse data envelopment analysis problems. Sci. World J. (2014) 2014. [Google Scholar]
  • G.R. Jahanshahloo, M. Soleimani-Damaneh and S. Ghobadi, Inverse DEA under inter-temporal dependence using multiple-objective programming. Eur. J. Oper. Res. 240 (2015) 447–456. [Google Scholar]
  • M. Kalantary, R.F. Saen, and A. Toloie Eshlaghy, Sustainability assessment of supply chains by inverse network dynamic data envelopment analysis. Sci. Iran. 25 (2018) 3723–3743. [Google Scholar]
  • M. Kalantary, and R.F. Saen, Assessing sustainability of supply chains: An inverse network dynamic DEA model. Comput. Ind. Eng. 135 (2018) 1224–1238. [Google Scholar]
  • S. Lertworasirikul, P. Charnsethikul and S.-C. Fang, Inverse data envelopment analysis model to preserve relative efficiency values: the case of variable returns to scale. Comput. Ind. Eng. 61 (2011) 1017–1023. [Google Scholar]
  • H.-T. Lin, An efficiency-driven approach for setting revenue target. Decis. Support Syst. 49 (2010) 311–317. [Google Scholar]
  • Q. Wei, J. Zhang and X. Zhang, An inverse DEA model for inputs/outputs estimate. Eur. J. Oper. Res. 121 (2000) 151–163. [Google Scholar]
  • H. Yan, Q. Wei and G. Hao, DEA models for resource reallocation and production input/output estimation. Eur. J. Oper. Res. 136 (2002) 19–31. [Google Scholar]
  • G. Zhang and J. Cui, A general inverse DEA model for non-radial DEA. Comput. Ind. Eng. 142 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.