RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
Operations Research and Mathematical Programming (dedicated to Prof. Alain Quilliot)
Page(s) 2141 - 2163
Published online 08 July 2021
  • S. Albers, Energy-efficient algorithms. Commun. ACM 53 (2010) 86–96. [Google Scholar]
  • E. Angel, E. Bampis and V. Chau, Low complexity scheduling algorithms minimizing the energy for tasks with agreeable deadlines. Disc. Appl. Math. 175 (2014) 1–10. [Google Scholar]
  • P. Baptiste, Scheduing unit tasks to minimize the number of idle periods: a polynomial time algorithm for offline dynamic power management. In: Proceedings of the 17th Annual ACM-SIMA Symposium on Discrete Algorithms (2006) 364–367. [Google Scholar]
  • P. Baptiste, E. Neron and F. Sourd, Modèles et Algorithmes en Ordonnancement; Ed Ellipses (2004) 198–203. [Google Scholar]
  • L. Benini, A. Bogliolo and G. De Micheli, A survey of design techniques for system level dynamic power management. IEEE Trans. Very Large Scale Integr. Syst. 8 (2000) 299–316. [Google Scholar]
  • A. Burke, Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc. IEEE 95 (2007) 806–820. [CrossRef] [Google Scholar]
  • C.C. Chan, The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95 (2007) 704–718. [Google Scholar]
  • P. Chretienne and A. Quilliot, Homogeneous non idling schedules of unit-time jobs on identical parallel machines. Disc. Appl. Math. 161 (2013) 1586–1597. [Google Scholar]
  • P. Chretienne and A. Quilliot, A polynomial algorithm for the homogeneous non idling scheduling problem of unit-time independent jobs on identical parallel machines. Disc. Appl. Math. 243 (2018) 132–139. [Google Scholar]
  • P. Chretienne, P. Fouilhoux and A. Quilliot, Anchored reactive and proactive solutions to the CPM-scheduling problem. Eur. J. Oper. Res. 261 (2017) 67–74. [Google Scholar]
  • E. Demaine, M. Ghodsi and M. Taghi Hajiaghayi, Scheduling to minimize gaps and power consumption. SPAA (2007) 46–54. [Google Scholar]
  • M. Drexl, Synchronization in vehicle routing – a survey of VRPs with multiple synchronization constraints. Transp. Sci. 46 (2012) 297–316. [Google Scholar]
  • S. Erdogan and E. Miller-Hooks, A green vehicle routing problem. Transp. Res. Part E: Logist. Transp. Rev. 109 (2012) 100–114. [Google Scholar]
  • A. Franceschetti, E. Demir, D. Honhon, T. Van Woensel, G. Laporte and M. Stobbe, A metaheuristic for the time dependent pollution-routing problem. Eur. J. Oper. Res. 259 (2017) 972–991. [Google Scholar]
  • C. Grimes, O. Varghese and S. Ranjan, Light, Water, Hydrogen: The Solargeneration of Hydrogen by Water Photoelectrolysis. Springer-Verlag, US (2008). [Google Scholar]
  • S. Irani and K. Pruhs, Algorithms for power management. SIGACT News 36 (2003) 63–76. [Google Scholar]
  • I. Kara, B.Y. Kara and M. Kadri Yetis, Energy minimizing vehicle routing problem, edited by A. Dress, Y. Xu and B. Zhu. In: Combinatorial Optimization and Applications. Berlin, Heidelberg (2007) 62–71. [Google Scholar]
  • C. Koç, O. Jabali, J. Mendoza and G. Laporte, The electric vehicle routing problem with shared charging stations. Int. Trans. Oper. Res. 26 (2019) 1211–1243. [Google Scholar]
  • Y. Kuo, Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput. Ind. Eng. 59 (2010) 157–165. [CrossRef] [Google Scholar]
  • A. Lajunen, Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp. Res. Part C: Emerg. Technol. 38 (2014) 1–15. [Google Scholar]
  • S. Licht, Thermochemical and Thermal/Photo Hybrid Solar Water Splitting. Springer New York, New York, NY (2008). [Google Scholar]
  • C. Lin, K.L. Choy, G.T. Ho, S.H. Chung and H. Lam, Survey of green vehicle routing problem: past and future trends. Expert Syst. App. 41 (2014) 1118–1138. [Google Scholar]
  • L. Lozano and A.L. Medaglia, On an exact method for the constrained shortest path problem. Comput. Oper. Res. 40 (2013) 378–384. [Google Scholar]
  • J.-Y. Moon and J.-W. Park, Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage. Int. J. Prod. Res. 52 (2014) 3922–3939. [Google Scholar]
  • J.-Y. Moon, K. Shin and J.W. Park, Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency. Int. J. Adv. Manuf. Technol. 68 (2013) 523–535. [Google Scholar]
  • H. Mustapha, C. Desdouits, R. Giroudeau and C. Le Pape, Production scheduling with a piecewise-linear energy cost function (2016) 1–8. [Google Scholar]
  • A. Pechmann and I. Schöler, Optimizing energy costs by intelligent production scheduling, edited by J. Hesselbach and C. Herrmann. In: Glocalized Solutions for Sustainability in Manufacturing. Berlin, Heidelberg (2011) 293–298. [Google Scholar]
  • M. Raylan, S. Matos, Y. Frota and L. Satoru Ochi, Green vehicle routing and scheduling problem with split delivery. Electron. Notes Disc. Math. 69 (2018) 13–20. Joint, EURO/ALIO, International Conference 2018 on Applied Combinatorial Optimization (EURO/ALIO 2018). [Google Scholar]
  • M. Sachenbacher, M. Leucker, A. Artmeier and J. Haselmayr, Efficient energy-optimal routing for electric vehicles. In: AAAI (2011). [Google Scholar]
  • M. Schneider, A. Stenger and D. Goeke, The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 48 (2014) 500–520. [Google Scholar]
  • R. Waraich, M. Galus, C. Dobler, M. Balmer, G. Andersson and K. Axhausen, Plug-in hybrid electric vehicles and smart grid: investigations based on a micro simulation. Transp. Res. Part C: Emerg. Technol. 28 (2014) 74–86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.