Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
Page(s) 2265 - 2283
DOI https://doi.org/10.1051/ro/2021100
Published online 02 August 2021
  • F. Arnold and K. Sörensen, What makes a VRP solution good? The generation of problem-specific knowledge for heuristics. Comput. Oper. Res. 106 (2019) 280–288. [Google Scholar]
  • F. Arnold, I. Cardenas, K. Sörensen and W. Dewulf, Simulation of B2C e-commerce distribution in Antwerp using cargo bikes and delivery points., Eur. Trans. Res. Rev. 10 (2018) 1–13. [Google Scholar]
  • F. Arnold, M. Gendreau and K. Sörensen, Efficiently solving very large-scale routing problems. Comput. Oper. Res. 107 (2019) 32–42. [Google Scholar]
  • J. Brandão, A tabu search algorithm for the open vehicle routing problem. Eur. J. Oper. Res. 157 (2004) 552–564. [Google Scholar]
  • G. Clarke and J.W. Wright, Scheduling of vehicles from a central depot to number of delivery points. Oper. Res. 12 (1964) 568–581. [Google Scholar]
  • T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms. MIT Press (2009). [Google Scholar]
  • G.B. Dantzig and J.H. Ramser, The truck dispatching problem. Manage. Sci. 6 (1959) 80–91. [Google Scholar]
  • T. Doyuran and B. Çatay, A robust enhancement to the Clarke-Wright savings algorithm. J. Oper. Res. Soc. 62 (2011) 223–231. [Google Scholar]
  • R. Elshaer and H. Awad, A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Comput. Ind. Eng. 140 (2020) 106242. [Google Scholar]
  • B.E. Gillett and L.R. Miller, A heuristic algorithm for the vehicle dispatch problem. Oper. Res. 22 (1974) 340–349. [Google Scholar]
  • V.C. Karels, L.P. Veelenturf and T. Van Woensel, An auction for collaborative vehicle routing: models and algorithms. EURO J. Transp. Logistics 9 (2020) 100009. [Google Scholar]
  • J. Kytöjoki, T. Nuortio, O. Bräysy and M. Gendreau, An efficient variable neighborhood search heuristic for very large-scale vehicle routing problems. Comput. Oper. Res. 34 (2007) 2743–2757. [Google Scholar]
  • G. Laporte, The Vehicle Routing Problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59 (1992) 345–358. [Google Scholar]
  • MATLAB, version 9.0.0.341360 (R2016a). The MathWorks Inc., Natick, MA (2016). [Google Scholar]
  • PassMark Software, Cpu benchmarks. Accessed: 2021-04-08 (2018)https://www.cpubenchmark.net/. [Google Scholar]
  • Test data source. http://neo.lcc.uma.es/vrp/vrp-instances/. [Google Scholar]
  • P. Toth and D. Vigo, editors, The Vehicle Routing Problem. Siam Monographs on Discrete Mathematics and Applications, Philadelphia, Pennsylvania (2001). [Google Scholar]
  • A. Van Breedam, Comparing descent heuristics and metaheuristics for the vehicle routing problem. Comput. Oper. Res. 28 (2001) 289–315. [Google Scholar]
  • B.R. Vangipurapu, R. Govada and N.R. Kandukuri, A new heuristic for solving vehicle routing problem with capacity constraints. J. Adv. Eng. Res. 6 (2019) 64–70. [Google Scholar]
  • B.R. Vangipurapu, R. Govada and N.R. Kandukuri, A new heuristic for solving open vehicle routing problem with capacity constraints. In: Innovative Product Design and Intelligent Manufacturing Systems. Springer, Singapore (2020) 897–906. [Google Scholar]
  • https://www.bigbasket.com/. [Google Scholar]
  • https://www.routing-solver.com/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.