Open Access
RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
Page(s) 2247 - 2264
Published online 29 July 2021
  • E.G. Amparore, M. Beccuti and S. Donatelli, Gradient-based variable ordering of decision diagrams for systems with structural units, edited by D. D’Souza and K. Narayan Kumar. In: Vol. 10482 of ATVA 2017. Lecture Notes in Computer Science. Springer, Cham (2017) 184–200. [Google Scholar]
  • Z.A. Aziz, Ant colony hyper-heuristics for travelling salesman problem. Proc. Comput. Sci. 76 (2015) 534–538. 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IEEE IRIS2015). [CrossRef] [Google Scholar]
  • M.W. Berry, B. Hendrickson and P. Raghavan, Sparse matrix reordering schemes for browsing hypertext, edited by J. Renegar, M. Shub and S. Smale. In: Vol. 32 of Lectures in Applied Mathematics. The Mathematics of Numerical Analysis. American Mathematical Society Press, Park City, Utah, USA (1996) pp. 99–123. [Google Scholar]
  • M.E. Bolanos, S. Aviyente and H. Radha, Graph entropy rate minimization and the compressibility of undirected binary graphs. In: Proceedings of IEEE Statistical Signal Processing Workshop (SSP). IEEE, Ann Arbor, MI (2012) 109–112. [CrossRef] [Google Scholar]
  • G.O. Chagas and S.L. Gonzaga de Oliveira, Metaheuristic-based heuristics for symmetric-matrix bandwidth reduction: a systematic review. Proc. Comput. Sci. (ICCS 2015 Int. Conf. Comput. Sci.) 51 (2015) 211–220. [Google Scholar]
  • H.-K. Chen, Evaluation of triangular mesh layout techniques using large mesh simplification. Multimedia Tools App. 76 (2017) 25391–25419. [CrossRef] [Google Scholar]
  • A. Concas, C. Fenu and G. Rodriguez, PQser: a Matlab package for spectral seriation. Numer. Algorithms 80 (2019) 879–902. [CrossRef] [Google Scholar]
  • T.A. Davis and Y. Hu, The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38 (2011) 1–25. [Google Scholar]
  • J. Derrac, S. García, D. Molina and F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1 (2011) 3–18. [CrossRef] [Google Scholar]
  • M. Dorigo and T. Stützle, Ant Colony Optimization. The MIT Press, Cambridge, MA (2004). [CrossRef] [Google Scholar]
  • M. Dorigo, M. Birattari and T. Stützle, Ant colony optimization: artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 1 (2006) 28–39. [CrossRef] [Google Scholar]
  • J.H. Drake, A. Kheiri, E. Özcan and E.K. Burke, Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 2852 (2020) 405–428. [CrossRef] [Google Scholar]
  • Y. Gan, Y. He, L. Gao and W. He, Propagation path optimization of product attribute design changes based on petri net fusion ant colony algorithm. Expert Syst. App. 173 (2021) 114664. [CrossRef] [Google Scholar]
  • A. George and J.W. Liu, Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981). [Google Scholar]
  • S.L. Gonzaga de Oliveira and G.O. Chagas, A systematic review of heuristics for symmetric-matrix bandwidth reduction: methods not based on metaheuristics. In: Proceedings of the Brazilian Symposium on Operations Research (SBPO 2015). Sobrapo, Pernambuco, Brazil (2015). [Google Scholar]
  • S.L. Gonzaga de Oliveira and L.M. Silva, Evolving reordering algorithms using an ant colony hyperheuristic approach for accelerating the convergence of the ICCG method. Eng. Comput. 36 (2019) 1857–1873. [CrossRef] [Google Scholar]
  • S.L. Gonzaga de Oliveira and L.M. Silva, An ant colony hyperheuristic approach for matrix bandwidth reduction. Appl. Soft Comput. 94 (2020) 106434. [CrossRef] [Google Scholar]
  • S.L. Gonzaga De Oliveira, A.A.A.M. Abreu, D.T. Robaina and M. Kischnhevsky, Finding a starting vertex for the reverse Cuthill–Mckee method for bandwidth reduction: a comparative analysis using asymmetric matrices, edited by O. Gervasi, et al. In: Vol. 10960 of The 18th International Conference on Computational Science and Its Applications (ICCSA), Lecture Notes in Computer Science. Springer International Publishing, Cham (2018) 123–137. [Google Scholar]
  • S.L. Gonzaga de Oliveira, J.A.B. Bernardes and G.O. Chagas, An evaluation of low-cost heuristics for matrix bandwidth and profile reductions. Comput. Appl. Math. 37 (2018) 1412–1471. [CrossRef] [Google Scholar]
  • S.L. Gonzaga de Oliveira, J.A.B. Bernardes and G.O. Chagas, An evaluation of reordering algorithms to reduce the computational cost of the incomplete Cholesky-conjugate gradient method. Comput. Appl. Math. 37 (2018) 2965–3004. [CrossRef] [Google Scholar]
  • D.J. Higham, Unravelling small world networks. J. Comput. Appl. Math. 158 (2003) 61–74. [CrossRef] [Google Scholar]
  • B. Koohestani and R. Poli, A hyper-heuristic approach to evolving algorithms for bandwidth reduction based on genetic programming. In: Research and Development in Intelligent Systems XXVIII. Springer, London, London, UK (2011) 93–106. [CrossRef] [Google Scholar]
  • A. Lim, B. Rodrigues and F. Xiao, A fast algorithm for bandwidth minimization. Int. J. Artif. Intell. Tools 16 (2007) 537–544. [CrossRef] [Google Scholar]
  • W. Ma, X. Zhou, H. Zhu, L. Li and L. Jiao, A two-stage hybrid ant colony optimization for high-dimensional feature selection. Pattern Recognit. 116 (2021) 107933. [CrossRef] [Google Scholar]
  • C. Mueller, B. Martin and A. Lumsdaine, A comparison of vertex ordering algorithms for large graph visualization. In: Proceedings of the 6th International Asia-Pacific Symposium on Visualization (APVIS’07). Sydney, Australia (2007) 141–148. [Google Scholar]
  • C.H. Papadimitriou, The NP-completeness of bandwidth minimization problem. Comput. J. 16 (1976) 177–192. [Google Scholar]
  • L.M. Silva and S.L. Gonzaga de Oliveira, An experimental analysis of a GP hyperheuristic approach for evolving low-cost heuristics for profile reductions. In: Anais do SEMISH – Seminário Integrado de Software e Hardware. Cuiabá, MT (2020). [Google Scholar]
  • Y. Tian, D. Li, P. Zhou, R. Guo and Z. Liu, An aco-based hyperheuristic with dynamic decision blocks for intercell scheduling. J. Intell. Manuf. 29 (2018) 1905–1921. [CrossRef] [Google Scholar]
  • J. Torres-Jimenez, I. Izquierdo-Marquez, A. Garcia-Robledo, A. Gonzalez-Gomez, J. Bernal and R.N. Kacker, A dual representation simulated annealing algorithm for the bandwidth minimization problem on graphs. Inf. Sci. 303 (2015) 33–49. [CrossRef] [Google Scholar]
  • Z. Yang, L. Fang, X. Zhang and H. Zuo, Controlling a scattered field output of light passing through turbid medium using an improved ant colony optimization algorithm. Optics Lasers Eng. 144 (2021). [Google Scholar]
  • Y. Zhang, W. Shao and S.-J. Lai, Some new strategies for RCM ordering in solving electromagnetic stattering problems. Comput. Phys. Commun. 184 (2013) 1161–1164. [CrossRef] [Google Scholar]
  • L. Zhu, J. Lin, Y.-Y. Li and Z.-J. Wang, A decomposition-based multi-objective genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Knowl.-Based Syst. 225 (2021) 107099. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.