Open Access
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2685 - 2709
Published online 20 September 2021
  • S.S. Ahiska and R.E. King, Inventory optimization in a one product recoverable manufacturing system. Int. J. Prod. Econ. 124 (2010) 11–19. [Google Scholar]
  • S.S. Ahiska and R.E. King, Life cycle inventory policy characterizations for a single-product recoverable system. Int. J. Prod. Econ. 124 (2010) 51–61. [Google Scholar]
  • B. Babayigit and R. Ozdemir, A modified artificial bee colony algorithm for numerical function optimization. In: 2012 IEEE symposium on computers and communications (ISCC). IEEE (2012) 000245–000249. [Google Scholar]
  • Z.P. Bayndr, N. Erkip and R. Güllü, Assessing the benefits of remanufacturing option under one-way substitution. J. Oper. Res. Soc. 56 (2005) 286–296. [Google Scholar]
  • M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms. John Wiley & Sons (2013). [Google Scholar]
  • E. Benedito and A. Corominas, Optimal manufacturing policy in a reverse logistic system with dependent stochastic returns and limited capacities. Int. J. Prod. Res. 51 (2013) 189–201. [Google Scholar]
  • S. Burer and A.N. Letchford, Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manage. Sci. 17 (2012) 97–106. [Google Scholar]
  • G.A. DeCroix, Optimal policy for a multiechelon inventory system with remanufacturing. Oper. Res. 54 (2006) 532–543. [Google Scholar]
  • R. Dekker, M. Fleischmann, K. Inderfurth and L.N. van Wassenhove, Reverse Logistics: Quantitative Models for Closed-Loop Supply Chains. Springer Science & Business Media (2013). [Google Scholar]
  • S.D. Flapper, J.-P. Gayon and L.L. Lim, On the optimal control of manufacturing and remanufacturing activities with a single shared server. Eur. J. Oper. Res. 234 (2014) 86–98. [Google Scholar]
  • C. Gao, Y. Wang, L. Xu and Y. Liao, Dynamic pricing and production control of an inventory system with remanufacturing. Math. Prob. Eng. 2015 (2015). [Google Scholar]
  • B.C. Giri, C. Mondal and T. Maiti, Optimal product quality and pricing strategy for a twoperiod closed-loop supply chain with retailer variable markup. RAIRO:OR 53 (2019) 609–626. [Google Scholar]
  • D.P. Heyman, Optimal disposal policies for a single-item inventory system with returns. Naval Res. Logistics Q. 24 (1977) 385–405. [Google Scholar]
  • K. Inderfurth, Simple optimal replenishment and disposal policies for a product recovery system with leadtimes. Oper. Res. Spectr. 19 (1997) 111–122. [Google Scholar]
  • K. Inderfurth, Optimal policies in hybrid manufacturing/remanufacturing systems with product substitution. Int. J. Prod. Econ. 90 (2004) 325–343. [Google Scholar]
  • K. Inderfurth and E. van der Laan, Leadtime effects and policy improvement for stochastic inventory control with remanufacturing. Int. J. Prod. Econ. 71 (2001) 381–390. [Google Scholar]
  • G.P. Kiesmüller, A new approach for controlling a hybrid stochastic manufacturing/remanufacturing system with inventories and different leadtimes. Eur. J. Oper. Res. 147 (2003) 62–71. [Google Scholar]
  • A. Maji, A.K. Bhunia and S.K. Mondal, Exploring a productioninventory model with optimal reliability of the production in a parallel-series system. J. Ind. Prod. Eng. 37 (2020) 71–86. [Google Scholar]
  • J.A. Muckstadt and M.H. Isaac, An analysis of single item inventory systems with returns. Naval Res. Logistics Q. 28 (1981) 237–254. [Google Scholar]
  • A. Nobari, A.S. Kheirkhah and M. Esmaeili, Considering chain-to-chain competition on environmental and social concerns in a supply chain network design problem. Int. J. Manage. Sci. Eng. Manage. 14 (2019) 33–46. [Google Scholar]
  • V.P. Simpson, Optimum solution structure for a repairable inventory problem. Oper. Res. 26 (1978) 270–281. [Google Scholar]
  • S.K. Srivastava, Green supply-chain management: a state-of-the-art literature review. Int. J. Manage. Rev. 9 (2007) 53–80. [Google Scholar]
  • K. Takahashi, Y. Doi, D. Hirotani and K. Morikawa, An adaptive pull strategy for remanufacturing systems. J. Intell. Manuf. 25 (2014) 629–645. [Google Scholar]
  • M. Thierry, M. Salomon, J. Van Nunen and L. Van Wassenhove, Strategic issues in product recovery management. California Manage. Rev. 37 (1995) 114–136. [Google Scholar]
  • E. Van der Laan and M. Salomon, Production planning and inventory control with remanufacturing and disposal. Eur. J. Oper. Res. 102 (1997) 264–278. [Google Scholar]
  • E. Van der Laan, R. Dekker, M. Salomon and A. Ridder, An (s, q) inventory model with remanufacturing and disposal. Int. J. Prod. Econ. 46 (1996) 339–350. [Google Scholar]
  • E. Van der Laan, R. Dekker and M. Salomon, Product remanufacturing and disposal: a numerical comparison of alternative control strategies. Int. J. Prod. Econ. 45 (1996) 489–498. [Google Scholar]
  • E. Van der Laan, M. Salomon and R. Dekker, An investigation of lead-time effects in manufacturing/remanufacturing systems under simple push and pull control strategies. Eur. J. Oper. Res. 115 (1999) 195–214. [Google Scholar]
  • Y. Xiong and G. Li, The value of dynamic pricing for cores in remanufacturing with backorders. J. Oper. Res. Soc. 64 (2013) 1314–1326. [Google Scholar]
  • Y. Xiong, G. Li, Y. Zhou, K. Fernandes, R. Harrison and Z. Xiong, Dynamic pricing models for used products in remanufacturing with lost-sales and uncertain quality. Int. J. Prod. Econ. 147 (2014) 678–688. [Google Scholar]
  • Y.-C. Zhou and X.-C. Sun, Robust optimal inventory and acquisition effort decisions in a hybrid manufacturing/remanufacturing system. J. Ind. Prod. Eng. 36 (2019) 335–350. [Google Scholar]
  • H. Zolfagharinia, M. Hafezi, R.Z. Farahani and B. Fahimnia, A hybrid two-stock inventory control model for a reverse supply chain. Transp. Res. Part E: Logistics Transp. Rev. 67 (2014) 141–161. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.