Open Access
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2711 - 2737
Published online 20 September 2021
  • S. Alp and E. Öz, Customer Oriented Product Design with Conjoint Analysis. Springer, Cham (2020) 401–415. [Google Scholar]
  • Y.A. Alamerew and D. Brissaud, Modelling and assessment of product recovery strategies through systems dynamics. Proc. CIRP 69 (2018) 822–826. [Google Scholar]
  • F.M. Asif, M. Lieder and A. Rashid, Multi-method simulation based tool to evaluate economic and environmental performance of circular product systems. J. Clean. Prod. 139 (2016) 1261–1281. [Google Scholar]
  • R. Aydin, C.K. Kwong and P. Ji, Coordination of the closed-loop supply chain for product line design with consideration of remanufactured products. J. Clean. Prod. 114 (2016) 286–298. [Google Scholar]
  • E. Babaee Tirkolaee, A. Goli, M. Pahlevan and R. Malekalipour Kordestanizadeh, A robust bi-objective multi-trip periodic capacitated arc routing problem for urban waste collection using a multi-objective invasive weed optimization. Waste Manage. Res. 37 (2019) 1089–1101. [Google Scholar]
  • W. Chen, C. Hoyle and H.J. Wassenaar, Decision-based Design: Integrating Consumer Preferences into Engineering Design. Springer Science & Business Media(2012). [Google Scholar]
  • S.K. Das, S.K. Roy and G.-W. Weber, Application of type-2 fuzzy logic to a multiobjective green solid transportation–location problem with dwell time under carbon tax, cap, and offset policy: fuzzy versus nonfuzzy techniques. IEEE Trans. Fuzzy Syst. 28 (2020) 2711–2725. [Google Scholar]
  • D.N. Ford and J.D. Sterman, Dynamic modeling of product development processes. Syst. Dyn. Rev.: J. Syst. Dyn. Soc. 14 (1998) 31–68. [Google Scholar]
  • J.W. Forrester, Industrial dynamics. A major breakthrough for decision makers. Harvard Bus. Rev. 36 (1958) 37–66. [Google Scholar]
  • J. Forrester, Principles of systems . Allen. Press. Inc. 1 (1968) 51. [Google Scholar]
  • R. Giahi, C.A. MacKenzie and C. Hu, Design optimization for resilience for risk-averse firms. Comput. Ind. Eng. 139 (2020) 106122. [Google Scholar]
  • A. Goli, H.K. Zare, R. Tavakkoli-Moghaddam and A. Sadeghieh, Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numer. Algebra Control Optim. 9 (2019) 187. [Google Scholar]
  • M. Graczyk-Kucharska, A. Özmen, M. Szafrański, G.W. Weber, M. Golińśki and M. Spychała, Knowledge accelerator by transversal competences and multivariate adaptive regression splines. Cent. Eur. J. Oper. Res. 28 (2020) 645–669. [Google Scholar]
  • P.E. Green and V. Srinivasan, Conjoint analysis in consumer research: issues and outlook. J. Cons. Res. 5 (1978) 103–123. [Google Scholar]
  • S. Hasegawa, Y. Kinoshita, T. Yamada and S. Bracke, Life cycle option selection of disassembly parts for material-based CO2 saving rate and recovery cost: analysis of different market value and labor cost for reused parts in German and Japanese cases. Int. J. Prod. Econ. 213 (2019) 229–242. [Google Scholar]
  • R. Hochmuth, H. Meerkamm and W. Schweiger, An approach to a general view on tolerances in mechanical engineering. IPD 98 (1998) 65–76. [Google Scholar]
  • S. Hoffenson and R. Söderberg, Systems thinking in tolerance and quality-related design decision-making. Proc. CIRP 27 (2015) 59–64. [Google Scholar]
  • S. Hoffenson, A. Dagman and R. Söderberg, Tolerance optimisation considering economic and environmental sustainability. J. Eng. Des. 25 (2014) 367–390. [Google Scholar]
  • S. Khalilpourazari and S. Khalilpourazary, An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput. 23 (2019) 1699–1722. [Google Scholar]
  • S. Khalilpourazari, S. Soltanzadeh, G.-W. Weber and S.K. Roy, Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study. Ann. Oper. Res. 289 (2020) 123–152. [Google Scholar]
  • B. Khara, J.K. Dey and S.K. Mondal, An inventory model under development cost-dependent imperfect production and reliability-dependent demand. J. Manag. Anal. 4 (2017) 258–275. [Google Scholar]
  • O. Kramer, D.E. Ciaurri and S. Koziel, Derivative-free optimization. In: Computational Optimization, Methods and Algorithms. Springer, Berlin, Heidelberg (2011) 61–83. [Google Scholar]
  • M. Kuzmanovic, M. Martic and M. Vujosevic, Designing a profit-maximizing product line for heterogeneous market. Tehnicki vjesnik 26 (2019) 1562–1569. [Google Scholar]
  • S. Lee, Y. Geum, H. Lee and Y. Park, Dynamic and multidimensional measurement of product-service system (PSS) sustainability: a triple bottom line (TBL)-based system dynamics approach. J. Clean. Prod. 32 (2012) 173–182. [Google Scholar]
  • L. Liu, Y. Hsu and J. Lin, Sustainable development analysis of design and manufacturing integration: a system dynamics approach. Cog. Eng. 6 (2019) 1682775. [Google Scholar]
  • R. Lotfi, Z. Yadegari, S.H. Hosseini, A.H. Khameneh, E.B. Tirkolaee and G.-W. Weber, A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: a case study for a bridge construction project. J. Ind. Manag. Optim. 13 (2020). DOI: 10.3934/jimo.2020158. [Google Scholar]
  • R. Lotfi, Y.Z. Mehrjerdi, M.S. Pishvaee, A. Sadeghieh and G.-W. Weber, A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numer. Algebra Control Optim. 11 (2021) 221. [Google Scholar]
  • A. Martin, V. Gayathri, G. Saranya, P. Gayathri and P. Venkatesan, A hybrid model for bankruptcy prediction using genetic algorithm, fuzzy c-means and mars. Preprint arXiv:1103.2110 (2011). [Google Scholar]
  • E.C.L. Muniz and O. Possamai, The complexity of new products: a dynamic model for productivity loss analysis within productive systems. Gest. Prod. 26 (2019). [Google Scholar]
  • A. Özmen and G.W. Weber, RMARS: robustification of multivariate adaptive regression spline under polyhedral uncertainty. J. Comput. App. Math. 259 (2014) 914–924. [Google Scholar]
  • A. Özmen, G.W. Weber and İ. Batmaz, The new robust CMARS (RCMARS) method. Vectors 1 (2010) 362–368. [Google Scholar]
  • A. Özmen, G.W. Weber, İ. Batmaz and E. Kropat, RCMARS: robustification of CMARS with different scenarios under polyhedral uncertainty set. Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 4780–4787. [Google Scholar]
  • T. Paksoy, N.Y. Pehlivan and E. Özceylan, Application of fuzzy optimization to a supply chain network design: a case study of an edible vegetable oils manufacturer. App. Math. Model. 36 (2012) 2762–2776. [Google Scholar]
  • P.Y. Papalambros and D.J. Wilde, Principles of Optimal Design: Modeling and Computation, 2nd edition. Cambridge Univ. Press, New York (2000) 7. [Google Scholar]
  • J. Peters, Tolerancing the components of an assembly for minimum cost. J. Eng. Ind. 92 (1970) 677–682. [Google Scholar]
  • S.K. Roy, S. Midya and G.-W. Weber, Multi-objective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural Comput. App. 31 (2019) 8593–8613. [Google Scholar]
  • S. Siriwardena, G. Hunt, M.F. Teisl and C.L. Noblet, Effective environmental marketing of green cars: a nested-logit approach. Transp. Res. D 17 (2012) 237–242. [Google Scholar]
  • F.H. Speckhart, Calculation of tolerance based on a minimum cost approach. J. Eng. Ind. 94 (1972) 447–453. [Google Scholar]
  • M.F. Spotts, Allocation of tolerances to minimize cost of assembly. J. Eng. Ind. 95 (1973) 762–764. [Google Scholar]
  • B. Steen, A systematic approach to environmental priority strategies in product development (EPS): version 2000-models and data of the default method. J. Chalmers tek. högsk. (1999) 67. [Google Scholar]
  • R. Syah, M. Elveny, M. Nasution and G.W. Weber, Enhanced knowledge acceleration estimator optimally with MARS to business metrics in merchant ecosystem. In: 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (2020) 1–6. [Google Scholar]
  • E.B. Tirkolaee, A. Goli and G.-W. Weber, Multi-objective aggregate production planning model considering overtime and outsourcing options under fuzzy seasonal demand. Springer, Cham (2019) 81–96. [Google Scholar]
  • K.E. Train, Discrete Choice Methods with Simulation. Cambridge Univ. Press (2009). [Google Scholar]
  • L. Yao, T. Liu, X. Chen, M. Mahdi and J. Ni, An integrated method of life-cycle assessment and system dynamics for waste mobile phone management and recycling in China. J. Clean. Prod. 187 (2018) 852–862. [Google Scholar]
  • L.J. Zeballos, C.A. Mendez and A.P.B. Povoa, Mixed-integer linear programming approach for product design for life-cycle profit. Comput. Ind. Eng. 137 (2019) 106079. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.