Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2739 - 2762
DOI https://doi.org/10.1051/ro/2021135
Published online 20 September 2021
  • G.R. Amin, A. Emrouznejad and S. Gattoufi, Modelling generalized firms’ restructuring using inverse DEA. J. Prod. Anal. 48 (2017) 51–61. [Google Scholar]
  • M.H. Behzadi and M. Mirbolouki, Symmetric error structure in stochastic DEA. Int. J. Ind. Math. 4 (2012) 335–343. [Google Scholar]
  • M.H. Behzadi, N. Nematollahi and M. Mirbolouki, Ranking efficient DMUS with stochastic data by considering inefficient frontier. Int. J. Ind. Math. 1 (2009) 219–226. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • W.W. Cooper, Z. Huang and S. Li, Satisficing DEA models under chance constraints. Ann. Oper. Res. 66 (1996) 259–279. [Google Scholar]
  • W.W. Cooper, Z. Huang, V. Lelas, S. Li and O.B. Olesen, Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. J. Prod. Anal. 9 (1998) 53–80. [Google Scholar]
  • W.W. Cooper, L.M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text With Models, Applications. Kluwer Academic Publisher, References and DEA-Solver Software (1999). [Google Scholar]
  • W.W. Cooper, H. Deng, Z.M. Huang and S.X. Li, Change constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis. J. Oper. Res. Soc. 53 (2002) 1347–1356. [Google Scholar]
  • D. Despotis and Y. Smirlis, Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 140 (2002) 24–36. [Google Scholar]
  • L. Dong Joon, Inverse DEA with frontier changes for new target setting. Eur. J. Oper. Res. 254 (2016) 510–516. [Google Scholar]
  • M. Ehrgott, Multicriteria Optimization. Springer, Berlin (2005). [Google Scholar]
  • A. Emrouznejad and M. Tavana, Performance Measurement with Fuzzy Data Envelopment Analysis. Springer (2014). [Google Scholar]
  • A. Emrouznejad and G. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. J. Soc.-Econ. Plan. Sci. 61 (2018) 4–8. [Google Scholar]
  • A. Emrouznejad, G.-L. Yang and G.R. Amin, A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in chinese manufacturing industries. J. Oper. Res. Soc. 70 (2019) 1079–1090. [Google Scholar]
  • T. Entani, Y. Maeda and H. Tanaka, Dual models of interval DEA and its extension to interval data. Eur. J. Oper. Res. 136 (2002) 32–45. [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc.: Ser. A (General) 120 (1957) 253–281. [Google Scholar]
  • S. Gattoufi, G.R. Amin and A. Emrouznejad, A new inverse DEA method for merging banks. IMA J. Manage. Math. 25 (2014) 73–87. [Google Scholar]
  • S. Ghobadi, Inverse DEA using enhanced russell measure in the presence of fuzzy data. Int. J. Ind. Math. 10 (2018) 1–16. [Google Scholar]
  • S. Ghobadi, A generalized DEA model for inputs (outputs) estimation under inter-temporal dependence. RAIRO:OR 53 (2019) 1791–1805. [Google Scholar]
  • S. Ghobadi, A dynamic DEA model for resource allocation. Int. J. Math. Oper. Res. 17 (2020) 50–77. [Google Scholar]
  • S. Ghobadi, Merging decision-making units with interval data. RAIRO:OR 55 (2021) 1605–1630. [Google Scholar]
  • S. Ghobadi and S. Jahangiri, Inverse DEA: review, extension and application. Int. J. Technol. Decis. Making 14 (2015) 805–824. [Google Scholar]
  • A. Hadi-Vencheh, A.A. Foroughi and M. Soleimani-Damaneh, A DEA model for resource allocation. Econ. Model. 25 (2008) 983–993. [Google Scholar]
  • F. Hosseinzadeh Lotfi, N. Nematollahi, M.H. Behzadi, M. Mirbolouki and Zohreh Moghaddas, Centralized resource allocation with stochastic data. J. Comput. Appl. Math. 236 (2012) 1783–1788. [Google Scholar]
  • Z. Huang and S. Li, Stochastic DEA models with different types of input-output disturbances. J. Prod. Anal. 15 (2001) 95–113. [Google Scholar]
  • G.R. Jahanshahloo, M.H. Behzadi and M. Mirbolouki, Ranking stochastic efficient dmus based on reliability. Int. J. Ind. Math. 2 (2010) 263–270. [Google Scholar]
  • G.R. Jahanshahloo, F. Hoseinzadeh Lotfi, M. Rostami-malkhalifeh and S. Ghobadi, Using enhanced russell model to solve inverse data envelopment analysis problems. Sci. World J. 2014 (2014) 1–10. [Google Scholar]
  • G.R. Jahanshahloo, M. Soleimani-damaneh and S. Ghobadi, Inverse DEA under inter-temporal dependence using multiple-objective programming. Eur. J. Oper. Res. 240 (2015) 447–456. [Google Scholar]
  • M. Khodabakhshi, Estimating most productive scale size with stochastic data in data envelopment analysis. Econ. Model. 26 (2009) 968–973. [Google Scholar]
  • T. Kuosmanen and M. Kortelainen, Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints. J. Prod. Anal. 38 (2012) 11–28. [Google Scholar]
  • S. Li, Stochastic models and variable returns to scales in data envelopment analysis. Eur. J. Oper. Res. 104 (1998) 532–548. [Google Scholar]
  • H.T. Lin, An efficiency-driven approach for setting revenue target. Decision Support Syst. 49 (2010) 311–317. [Google Scholar]
  • J.S. Liu, L.Y. Lu, W.M. Lu and B.J. Lin, A survey of DEA applications. Omega 41 (2013) 893–902. [Google Scholar]
  • F.H. Lotfi, N. Nematollahi, M. Behzadi and M. Mirbolouki, Ranking decision making units with stochastic data by using coefficient of variation. Math. Comput. App. 15 (2010) 148–155. [Google Scholar]
  • H. Naseri, S.E. Najafi and A. Saghaei, DEA model considering outputs with stochastic noise and a heavy-tailed (stable) distribution. INFOR: Inf. Syst. Oper. Res. 58 (2020) 87–108. [Google Scholar]
  • O.B. Olesen and N.C. Petersen, Stochastic data envelopment analysis – a review. Eur. J. Oper. Res. 251 (2016) 2–21. [Google Scholar]
  • P. Peykani, E. Mohammadi, M.S. Pishvaee, M. Rostamy-Malkhalifeh and A. Jabbarzadeh, A novel fuzzy data envelopment analysis based on robust possibilistic programming: Possibility, necessity and credibility-based approaches. RAIRO:OR 52 (2018) 1445–1463. [Google Scholar]
  • P. Peykani, E. Mohammadi, R.F. Saen, S.J. Sadjadi and M. Rostamy-Malkhalifeh, Data envelopment analysis and robust optimization: a review. Expert Syst. 37 (2020) e12534. [Google Scholar]
  • J.K. Sengupta, Efficiency analysis by stochastic data envelopment analysis. Appl. Econ. Lett. 7 (2002) 379–383. [Google Scholar]
  • L. Simar, How to improve the performance of DEA/FDH estimators in the presence of noise. J. Prod. Anal. 28 (2007) 1833–201. [Google Scholar]
  • L. Simar and P.W. Wilson, A general methodology for bootstrapping in non-parametric frontier models. J. Appl. Stat. 27 (2000) 779–802. [Google Scholar]
  • K. Soleimani-Chamkhorami, F.H. Lotfi, G.R. Jahanshahloo and M. Rostamy-Malkhalifeh, Preserving cost and revenue efficiency through inverse data envelopment analysis models. INFOR: Inf. Syst. Oper. Res. 58 (2020) 561–578. [Google Scholar]
  • S. Thore, Chance-constrained activity analysis. Eur. J. Oper. Res. 30 (1987) 267–269. [Google Scholar]
  • M. Wegener and G.R. Amin, Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert Syst. Appl. 122 (2019) 369–375. [Google Scholar]
  • Q.L. Wei, J.Z. Zhang and X.S. Zhang, An inverse DEA model for inputs/outputs estimate. Eur. J. Oper. Res. 121 (2000) 151–163. [Google Scholar]
  • E. Zenodin and S. Ghobadi, Merging decision-making units under inter-temporal dependence. IMA J. Manage. Math. 31 (2020) 139–16. [Google Scholar]
  • X. Zhang and J. Cui, A project evaluation system in the state economic information system of China: an operation research practice in public sectore. Int. Trans. Oper. 6 (1999) 441–452. [Google Scholar]
  • J. Zhu, Imprecise DEA via standard linear DEA models with a revisit to a Korean mobile telecommunication company. Oper. Res. 52 (2004) 323–329. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.