Open Access
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 3121 - 3140
Published online 21 October 2021
  • R.M. Aiex, M.G.C. Resende and C.C. Ribeiro, Ttt plots: a perl program to create time-to-target plots. Optim. Lett. 1 (2007) 355–366. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Barahona and A.R. Mahjoub, Facets of the balanced (acyclic) induced subgraph polytope. Math. Program. 45 (1989) 21–33. [CrossRef] [Google Scholar]
  • M. Birattari, Z. Yuan, P. Balaprakash and T. Stützle, F-race and iterated f-race: An overview. In: Experimental methods for the analysis of optimization algorithms. Springer (2010) 311–336. [CrossRef] [Google Scholar]
  • D. Cartwright and F. Harary, Structural balance: a generalization of heider’s theory. Psychol. Rev. 63 (1956) 277. [CrossRef] [PubMed] [Google Scholar]
  • B. DasGupta, G. Enciso, E. Sontag and Y. Zhang, Algorithmic and complexity results for decompositions of biological networks into monotone subsystems. Biosystems 90 (2006) 161–178. [Google Scholar]
  • M.R. de Holanda Maia, A. Plastino and P.H.V. Penna, Minereduce: an approach based on data mining for problem size reduction. Comput. Oper. Res. 122 (2020) 104995. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Dupin and E.-G. Talbi, Parallel matheuristics for the discrete unit commitment problem with minstop ramping constraints. Int. Trans. Oper. Res. 27 (2020) 219–244. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Figueiredo and Y. Frota, The maximum balanced subgraph of a signed graph: Applications and solution approaches. Eur. J. Oper. Res. 236 (2014) 473–487. [CrossRef] [Google Scholar]
  • R.M.V. Figueiredo, M. Labbé and C.C. De Souza, An exact approach to the problem of extracting an embedded network matrix. Comput. Oper. Res. 38 (2011) 1483–1492. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Fischetti and M. Fischetti, Matheuristics. In: Handbook of Heuristics. Springer (2018) 121–153. [CrossRef] [Google Scholar]
  • N. Gülpinar, G. Gutin, G. Mitra and A. Zverovitch, Extracting pure network submatrices in linear programs using signed graphs. Discrete Appl. Math. 137 (2004) 359–372. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Harary, M.-H. Lim and D.C. Wunsch, Signed graphs for portfolio analysis in risk management. IMA J. Manage. Math. 13 (2002) 201–210. [CrossRef] [Google Scholar]
  • F. Heider, Attitudes and cognitive organization. J. Psychology 21 (1946) 107–112. [Google Scholar]
  • F. Hüffner, N. Betzler and R. Niedermeier, Separator-based data reduction for signed graph balancing. J. Comb. Optim. 20 (2010) 335–360. [CrossRef] [MathSciNet] [Google Scholar]
  • M. López-Ibáñez, J. Dubois-Lacoste, L.P. Cáceres, M. Birattari and T. Stützle, The irace package: Iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3 (2016) 43–58. [MathSciNet] [Google Scholar]
  • F. Marinelli and A. Parente, A heuristic based on negative chordless cycles for the maximum balanced induced subgraph problem. Comput. Oper. Res. 69 (2016) 68–78. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Martn, Á. Sánchez, C. Beltran-Royo and A. Duarte, A matheuristic approach for solving the edge-disjoint paths problem. Matheuristics 2016 (2016) 25. [Google Scholar]
  • D. Martins, G.M. Vianna, I. Rosseti, S.L. Martins and A. Plastino, Making a state-of-the-art heuristic faster with data mining. Ann. Oper. Res. 263 (2018) 141–162. [CrossRef] [MathSciNet] [Google Scholar]
  • M.G.C. Resende and C.C. Ribeiro, Greedy randomized adaptive search procedures: advances and extensions. In: Handbook of metaheuristics. Springer (2019) 169–220. [CrossRef] [Google Scholar]
  • S. Wolfram, Wolfram Research. Inc., Mathematica, Version 8 (2013) 23. [Google Scholar]
  • T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Comb. 1000 (2012) DS8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.