Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 3107 - 3119
DOI https://doi.org/10.1051/ro/2021151
Published online 15 October 2021
  • A. Baykasoglu, K. Subulan and F.S. Karaslan, A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification. Appl. Soft Comput. 42 (2016) 1–17. [Google Scholar]
  • M.S. Bazaraa, C. Shetty and H.D. Sherali, Linear programming and network flows. John Wiley & Sons, New York (1990). [Google Scholar]
  • R. Burkard, M. Dell’Amico and S. Martello, Assignment problems. Society for Industrial Mathematics (2009). [Google Scholar]
  • S. Chakraborty, Applications of the MOORA method for decision-making in manufacturing environment. Int. J. Adv. Manuf. 54 (2011) 1155–66. [Google Scholar]
  • V.M. Charitopoulos and V. Dua, A unified framework for model-based multi-objective linear process and energy optimization under uncertainty. Appl. Energy 186 (2017) 539–548. [Google Scholar]
  • M.M. Dessouky and B.A. Kijowski, Production scheduling on single-stage multiproduct batch chemical process with fixed batch sized. IIE Trans. 29 (1997) 399–408. [Google Scholar]
  • L. Dymova, P. Sevastjanov and A. Tikhonenko, An interval type-2 fuzzy extension of the TOPSIS method using alpha cuts. Knowl. Based Syst. 83 (2015) 116–127. [Google Scholar]
  • S. Effati, A. Mansoori and M. Eshaghnezhad, An efficient projection neural network for solving bilinear programming problems. Neurocomputing 168 (2015) 1188–1197. [Google Scholar]
  • M. Eshaghnezhad, S. Effati and A. Mansoori, A neurodynamic model to solve nonlinear Pseudo-Monotone projection equation and its applications. IEEE Trans. Cybern. 47 (2017) 3050–3062. [Google Scholar]
  • M. Eshaghnezhad, F. Rahbarnia, S. Effati and A. Mansoori, An artificial neural network model to solve the fuzzy shortest path problem. Neural Process. Lett. 50 (2019) 1527–1548. [Google Scholar]
  • A.A. Foroughi and Y. Jafari, A modified method for constructing efficient solutions structure of MOLP. Appl. Math. Model. 33 (2009) 2403–10. [Google Scholar]
  • T.D. Gauthier, Detecting trends using spearman’s rank correlation coefficient. Environ. Forensics 2 (2001) 359–362. [Google Scholar]
  • S. Ghosh and S.K. Roy, Fuzzy-rough multi-objective product blending fixed-charge transportation problem with truck load constraints through transfer station. RAIRO: OR 55 (2021) S2923–S2952. [Google Scholar]
  • M. Hasan, I.E. Büyüktahtakn and E. Elamin, A multi-criteria ranking algorithm (MCRA) for determining breast cancer therapy. Omega 82 (2019) 83–101. [Google Scholar]
  • J.J. Hopfield and D.W. Tank, Neural computation of decisions in optimization problems. Biol. Cybern. 52 (1985) 141–152. [Google Scholar]
  • A.H. Hosseinian and V. Baradaran, A multi-objective multi-agent optimization algorithm for the multi-skill resource-constrained project scheduling problem with transfer times. RAIRO: OR 55 (2021) 2093–2128. [Google Scholar]
  • H.K. Khalil, Nonlinear systems. Prentice-Hall, Michigan (1996). [Google Scholar]
  • M. Khorbatly, H. Dkhil, H. Alabboud and A. Yassine, A hybrid algorithm Tabu Search – GRASP for wounded evacuation in disaster response. RAIRO: OR 54 (2020) 19–36. [Google Scholar]
  • A. Mansoori and M. Erfanian, A dynamic model to solve the absolute value equations. J. Comput. Appl. Math. 333 (2018) 28–35. [Google Scholar]
  • A. Mansoori and M. Mohammadi, A Projection Neural Network for Identifying Copy Number Variants. IEEE J. Biomed. Health Inform. 23 (2019) 2182–2188. [Google Scholar]
  • A. Mansoori, M. Eshaghnezhad and S. Effati, Recurrent Neural Network Model: A New Strategy to Solve Fuzzy Matrix Games. IEEE Trans. Neural Netw. Learn. Syst. 30 (2019) 2538–2547. [Google Scholar]
  • R.T. Marler and J.S. Arora, Survey of multi-objective optimization methods for engineering. Struct. Multidiscipl. Optim. 26 (2004) 369–95. [Google Scholar]
  • G. Minella, R. Ruiz and M. Ciavota, A review and evaluation of multi objective algorithms for the owshop scheduling problem. INFORMS J. Comput. 20 (2007) 451–471. [Google Scholar]
  • M. Omidvar and F. Nirumand, An extended VIKOR method based on entropy measure for the failure modes risk assessment - A case study of the geothermal power plant (GPP). Saf. Sci. 92 (2017) 160–172. [Google Scholar]
  • H. Omrani, S. Mohammadi and A. Emrouznejad, A bi-level multi-objective data envelopment analysis model for estimating profit and operational efficiency of bank branches. RAIRO: OR 53 (2019) 1633–1648. [Google Scholar]
  • J.D. Patel and K.D. Maniya, Application of AHP/MOORA method to select wire cut electrical discharge machining process parameter to cut EN31 alloys steel with brasswire. Mater. Today: Proc. 2 (2015) 2496–2503. [Google Scholar]
  • J. Rezaei, Best worst multi criteria decision-making method. Omega 53 (2015) 49–57. [Google Scholar]
  • S.A. Sadabadi, A. Hadi-Vencheh, A. Jamshidi and M. Jalali, A linear programming technique to solve fuzzy multiple criteria decision making problems with an application. RAIRO: OR 55 (2021) 83–97. [Google Scholar]
  • A. Schrijver, Combinatorial Optimization, Polyhedra and efficiency, Algorithms and combinatorics. Springer Verlag, Berlin 24 (2003).. [Google Scholar]
  • L. Sun, C.L. Miao and L. Yang, Ecological-economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecol. Indic. 73 (2017) 554–558. [Google Scholar]
  • E. Triantphyllou, Multi Criteria Decision Making Methods: Comparative Study. Kluwer Academic Publisher, Dordrecht (2000). [Google Scholar]
  • S. Wang, O. Meng and C.Y. Lee, Liner container assignment model with transit-time-sensitive container shipment demand and its applications. Transport. Res. Part B: Meth. 90 (2016) 135–155. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.