Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 3087 - 3105
DOI https://doi.org/10.1051/ro/2021149
Published online 14 October 2021
  • F. Achemine, A. Merakeb, M. Larbani and P. Marthon, Z-equilibria in bi-matrix games with uncertain payoffs. RAIRO Oper. Res. 54 (2020) 393–412. [Google Scholar]
  • M. Aggarwal, Hesitant information sets and application in group decision making. Appl. Soft Comput. 75 (2019) 120–129. [Google Scholar]
  • A. Aggarwal and I. Khan, Solving multi-objective fuzzy matrix games via multi-objective linear programming approach. Kybernetika 52 (2016) 153–168. [Google Scholar]
  • C.R. Bector, S. Chandra and V. Vijay, Duality in linear programming with fuzzy parameters and matrix games with fuzzy payoffs. Fuzzy Sets Syst. 46 (2004) 253–269. [Google Scholar]
  • A. Bhaumik and S.K. Roy, Intuitionistic interval-valued hesitant fuzzy matrix games with a new aggregation operator for solving management problem. Granul. Comput. 6 (2021) 359–375. [Google Scholar]
  • A. Bhaumik, S.K. Roy and D.F. Li, Analysis of triangular intuitionistic fuzzy matrix games using robust ranking. J. Intell. Fuzzy Syst. 33 (2017) 327–336. [Google Scholar]
  • A. Bhaumik, S.K. Roy and G.W. Weber, Hesitant interval-valued intuitionistic fuzzy-linguistic term set approach in Prisoners’ dilemma game theory using TOPSIS: a case study on Human-trafficking. Cent. Eur. J. Oper. Res. 28 (2020) 797–816. [Google Scholar]
  • H. Bigdeli and H. Hassanpour, An approach to solve multi-objective linear production planning games with fuzzy parameters. Yugosl. J. Oper. Res. 28 (2018) 237–248. [Google Scholar]
  • L. Campos, Fuzzy linear programming models to solve fuzzy matrix games. Fuzzy Sets Syst. 32 (1989) 275–289. [Google Scholar]
  • S.J. Chen and C.L. Hwang, Fuzzy Multiple Attribute Decision Making: Methods and Applications. Springer, New York (1992). [Google Scholar]
  • Y.W. Chen and M. Larbani, Two-person zero-sum game approach for fuzzy multiple attribute decision making problems. Fuzzy Sets Syst. 157 (2006) 34–51. [Google Scholar]
  • P.E. Ezimadu, Modelling cooperative advertising decisions in a manufacturer-distributor-retailer supply chain using game theory. Yugosl. J. Oper. Res. 30 (2020) 147–176. [Google Scholar]
  • B. Farhadinia and Z.S. Xu, A novel distance-based multiple attribute decision-making with hesitant fuzzy sets. Soft Comput. 24 (2020) 5005–5017. [Google Scholar]
  • A. Hatami-Marbini and F. Kangi, An extension of fuzzy TOPSIS for a group decision making with an application to Tehran stock exchange. Appl. Soft Comput. 52 (2017) 1084–1097. [Google Scholar]
  • C.L. Hwang and K. Yoon, Multiple attribute decision making methods and applications. Springer-Verlag, New York (1981). [Google Scholar]
  • J. Jana and S.K. Roy, Solution of matrix games with generalized trapezoidal fuzzy payoffs. Fuzzy Inf. Eng. 10 (2018) 213–224. [Google Scholar]
  • J. Jana and S.K. Roy, Dual hesitant fuzzy matrix games: based on new similarity measure. Soft Comput. 23 (2019) 8873–8886. [Google Scholar]
  • J. Jana and S.K. Roy, Soft matrix game: A hesitant fuzzy MCDM approach. Am. J. Math. Manag. Sci. 40 (2021) 107–119. [Google Scholar]
  • L.S. Jin, R. Mesiar and R. Yager, Ordered weighted averaging aggregation on convex poset. IEEE Trans. Fuzzy Syst. 27 (2019) 612–617. [Google Scholar]
  • S. Khalilpourazari and H.H. Doulabi, Designing a hybrid reinforcement learning based algorithm with application in prediction of the COVID-19 pandemic in Quebec. Ann. Oper. Res. (2021) 1–45. DOI: 10.1007/s10479-020-03871-7. [Google Scholar]
  • S. Khalilpourazari and H.H. Doulabi, Robust modelling and prediction of the COVID-19 pandemic in Canada. Int. J. Prod. Res. (2021) 1–17. DOI: 10.1080/00207543.2021.1936261. [Google Scholar]
  • S. Khalilpourazari and S.H.R. Pasandideh, Designing emergency flood evacuation plans using robust optimization and artificial intelligence. J. Comb. Optim. 41 (2021) 640–677. [Google Scholar]
  • S. Khalilpourazari, H.H. Doulabi, A.O. Ciftcioglu and G.W. Weber, Gradient-based grey wolf optimizer with Gaussian walk: Application in modelling and prediction of the COVID-19 pandemic. Expert Syst. Appl. 177 (2021). DOI: 10.1016/j.eswa.2021.114920. [PubMed] [Google Scholar]
  • S. Lalotra and S. Singh, Knowledge measure of hesitant fuzzy set and its application in multi-attribute decision-making. Comput. Appl. Math. 39 (2020) 1–31. [Google Scholar]
  • M. Larbani, Solving bimatrix games with fuzzy payoffs by introducing nature as a third player. Fuzzy Sets Syst. 160 (2009) 657–666. [Google Scholar]
  • M. Larbani, Non cooperative fuzzy games in normal form: A survey. Fuzzy Sets Syst. 160 (2009) 3184–3210. [Google Scholar]
  • D. Liang and Z.S. Xu, The new extension of TOPSIS method for multiple criteria decision making with hesitant pythagorean fuzzy sets. Appl. Soft Comput. 60 (2017) 167–179. [Google Scholar]
  • H. Liao and Z.S. Xu, Some new hybrid weighted aggregation operators under hesitant fuzzy multi-criteria decision making environment. J. Intell. Fuzzy Syst. 26 (2014) 1601–1617. [Google Scholar]
  • R. Lotfi, M. Nayeri, S. Sajadifar and N. Mardani, Determination of start times and ordering plans for two-period projects with interdependent demand in project-oriented organizations: A case study on molding industry. J. Proj. Manag. 2 (2017) 119–142. [Google Scholar]
  • R. Lotfi, Z. Yadegari, S.H. Hosseini, A.H. Khameneh, E.B. Tirkolaee and G.W. Weber, A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. J. Ind. Manag. Optim. 13 (2020) 1–22. [Google Scholar]
  • R. Lotfi, N. Mardani and G.W. Weber, Robust bi-level programming for renewable energy location. Int. J. Energy Res. 45 (2021) 7521–7534. [Google Scholar]
  • R. Lotfi, B. Kargar, S.H. Hoseini, S. Nazari, S. Safavi and G.W. Weber, Resilience and sustainable supply chain network design by considering renewable energy. Int. J. Energy Res. (2021). DOI: 10.1002/er.6943. [Google Scholar]
  • J.M. Merigo, A unified model between the weighted average and induced OWA operator. Expert Syst. Appl. 38 (2011) 11560–11572. [CrossRef] [Google Scholar]
  • X. Mo, H. Zhao and Z.S. Xu, Feature-based hesitant fuzzy aggregation method for satisfaction with life scale. Appl. Soft Comput. 94 (2020). DOI: 10.1016/j.asoc.2020.106493. [Google Scholar]
  • P. Mula, S.K. Roy and D.F. Li, Birough programming approach for solving bi-matrix games with birough payoff elements. J. Intell. Fuzzy Syst. 29 (2015) 863–875. [CrossRef] [Google Scholar]
  • I. Nishizaki and M. Sakawa, Fuzzy and multiobjective games for conflict resolution. Physica-Verlag, Heidelberg (2001). [CrossRef] [Google Scholar]
  • T. Parthasarathy and T.E.S. Raghavan, Some topics in two-person games. American Elsevier Publishing Company, New York (1971). [Google Scholar]
  • S.K. Roy, Game theory under MCDM and fuzzy set theory, VDM. VDM (Verlag Dr. Muller), Germany (2010). [Google Scholar]
  • S.K. Roy and P. Mula, Bimatrix game in bifuzzy rough environment. J. Uncertainty Anal. Appl. 1 (2013) 11. [CrossRef] [Google Scholar]
  • S.K. Roy and P. Mula, Rough set approach to bimatrix game. Int. J. Oper. Res. 23 (2015) 229–244. [CrossRef] [Google Scholar]
  • S.K. Roy and S.N. Mondal, An approach to solve fuzzy interval valued matrix game. Int. J. Oper. Res. 26 (2016) 253–267. [Google Scholar]
  • S.K. Roy and P. Mula, Solving matrix game with rough payoffs using genetic algorithm. Oper. Res. Int. J. 16 (2016) 117–130. [CrossRef] [Google Scholar]
  • S.K. Roy and A. Bhaumik, Intelligent water management: a triangular type-2 intuitionistic fuzzy matrix games approach. Water Resour. Manag. 32 (2018) 949–968. [CrossRef] [Google Scholar]
  • S.K. Roy and J. Jana, The multi-objective linear production planning games in triangular hesitant fuzzy sets. Sadhana 46 (2021) 176. [CrossRef] [Google Scholar]
  • M. Sakawa and H. Yano, Interactive decision making for multiobjective non linear programming problems with fuzzy parameters. Fuzzy Sets Syst. 29 (1989) 315–326. [CrossRef] [Google Scholar]
  • M. Sakawa and I. Nishizaki, Max-min solution for fuzzy multiobjective matrix games. Fuzzy Sets Syst. 67 (1994) 53–69. [CrossRef] [Google Scholar]
  • S. Singh and S. Lalotra, On generalized correlation coefficients of the hesitant fuzzy sets with their application to clustering analysis. Comput. Appl. Math. 38 (2019) 1–26. [CrossRef] [Google Scholar]
  • G. Sun, X. Guan, X. Yi and Z. Zhou, An innovative TOPSIS approach based on hesitant fuzzy correlation coefficient and its applications. Appl. Soft Comput. 68 (2018) 249–267. [CrossRef] [Google Scholar]
  • V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, In: Proceedings of the IEEE International Conference on Fuzzy Systems, Jeju Island, Korea (2009) 1378–1382. [Google Scholar]
  • C.Y. Wang and S.M. Chen, Multiple attribute decision making based on interval-valued intuitionistic fuzzy sets, linear programming methodology, and the extended TOPSIS method. Inf. Sci. 397 (2017) 155–167. [CrossRef] [Google Scholar]
  • M.M. Xia and Z.S. Xu, Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 52 (2011) 395–407. [CrossRef] [Google Scholar]
  • S.H. Xiong, Z.S. Chen and K.S. Chin, A novel MAGDM approach with proportional hesitant fuzzy sets. Int. J. Comput. Intell. Syst. 11 (2018) 256–271. [CrossRef] [Google Scholar]
  • R.R. Yager, On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18 (1988) 183–190. [CrossRef] [MathSciNet] [Google Scholar]
  • K.P. Yoon and W.K. Kim, The behavioral TOPSIS. Expert Syst. Appl. 89 (2017) 266–272. [CrossRef] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Control. 8 (1965) 338–356. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.