Open Access
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2599 - 2614
Published online 23 September 2021
  • T.J. Ai and V. Kachitvichyanukul, A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 36 (2009) 1693–1702. [Google Scholar]
  • J.S. Angelo and H.J.C. Barbosa, On Ant Colony Algorithms for Multiobjective Optimization, chap.5 in: Ant Colony Optimization – Methods and Applications, edited by A. Ostfeld. InTech (2011) 53–74. [Google Scholar]
  • N. Bianchessi and G. Righini, Heuristic algorithms for the vehicle routing problem with simultaneous pick-up and delivery. Comput. Oper. Res. 34 (2007) 578–94. [Google Scholar]
  • A.-L. Chen, G.-K. Yang and Z.-M. Wu, Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. J. Zhejiang Univ. Sci. A 7 (2006) 607–614. [Google Scholar]
  • W.-N. Chen, J. Zhang, H.S.H. Chung, W.-L. Zhong, W.-G. Wu and Y.-H. Shi, A novel set-based particle swarm optimization method for discrete optimization problems. IEEE Trans. Evol. Comput. 14 (2010) 278–300. [Google Scholar]
  • M. Clerc, Discrete particle swarm optimization, illustrated by the traveling salesman problem. In: New Optimization Techniques in Engineering. Vol. 141 of Studies in Fuzziness and Soft Computing. Springer-Verlag, Berlin-Heidelberg (2004) 219–239. [Google Scholar]
  • C.A. Coello Coello and M.S. Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization. In: Vol. 2 of Congress on Evolutionary Computation. CEC’02 (2002) 1051–1056. [Google Scholar]
  • G.B. Dantzig and J.H. Ramser, The truck dispatching problem. Manage. Sci. 6 (1959) 80–91. [Google Scholar]
  • J. de Armas and B. Melián-Batista, Variable neighborhood search for a dynamic rich vehicle routing problem with time windows. Comput. Ind. Eng. 85 (2015) 120–131. [Google Scholar]
  • K. Deb, S. Agrawal, A. Pratab and T. Meyarivan, A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Parallel Problem Solving from Nature VI Conference (2000) 849–858. [Google Scholar]
  • M. Dell’Amico, G. Righini and M. Salani, A branch-and-price approach to the vehicle routing problem with simultaneous distribution and collection. Transp. Sci. 40 (2006) 235–247. [CrossRef] [Google Scholar]
  • J. Dethloff, Vehicle routing and reverse logistics: the vehicle routing problem with simultaneous delivery and pick-up. OR Spectr. 23 (2001) 79–96. [Google Scholar]
  • J. Euchi and R. Mraihi, The urban bus routing problem in the Tunisian case by the hybrid artificial ant colony algorithm. Swarm Evol. Comput. 2 (2012) 15–24. [Google Scholar]
  • K. Ghoseiri and S.F. Ghannadpour, Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm. Appl. Soft Comput. 10 (2010) 1096–1107. [Google Scholar]
  • A. Halassi, An attractor-based multiobjective particle swarm optimization. Int. J. Appl. Comput. Math. 3 (2017) 1019–1036. [Google Scholar]
  • K.N. Ishibuchi, N. Tsukamoto and N. Nojima, An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization. Eur. J. Oper. Res. 188 (2008) 57–75. [Google Scholar]
  • N. Jozefowiez, F. Semet and E.G. Talbi, Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189 (2008) 296–309. [Google Scholar]
  • J. Kennedy and R. Eberhart, Particle swarm optimization. In: Proceedings of the Fourth IEEE International Conference on Neural Networks, Perth, Australia (1995). [Google Scholar]
  • J. Kennedy and R.C. Eberhart, A discrete binary version of the particle swarm algorithm. In: Vol. 5 of 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation (1997) 4104–4108. [Google Scholar]
  • J. Knowles and D. Corne, Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8 (2000) 149–172. [CrossRef] [Google Scholar]
  • M.F. Leung, S.C. Ng, C.C. Cheung and A.K. Lui, A new strategy for finding good local guides in MOPSO. In 2014 IEEE Congress on Evolutionary Computation (CEC) (2014) 1990–1997. [Google Scholar]
  • X. Li, A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Genetic and Evolutionary Computation-GECCO 2003. Vol. 2723 ofLecture Notes in Computer Science. Springer-Verlag, Berlin-Heidelberg (2003) 37–48. [CrossRef] [Google Scholar]
  • W.-X. Li, Q. Zhou, Y. Zhu and F. Pan, An improved MOPSO with a crowding distance based external archive maintenance strategy, edited by Y. Tan, Y. Shi and Z. Ji(eds)ICSI. Springer (2012) 74–82. [Google Scholar]
  • Y. Marinakis, M. Marinaki and G. Dounias, A hybrid particle swarm optimization algorithm for the vehicle routing problem. Eng. App. Artif. Intell. 23 (2010) 463–472. [Google Scholar]
  • S.A. MirHassani and N. Abolghasemi, A particle swarm optimization algorithm for open vehicle routing problem. Expert Syst. App. 38 (2011) 11547–11551. [Google Scholar]
  • C. Özkale and A. Fiğlali, Evaluation of the multiobjective ant colony algorithm performances on biobjective quadratic assignment problems. Appl. Math. Modell. 37 (2013) 7822–7838. [Google Scholar]
  • C.R. Raquel and P.C. Naval Jr, An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO’05. ACM (2005) 257–264. [Google Scholar]
  • R. Roy, S. Dehuri and S.B. Cho, A novel particle swarm optimization algorithm for multi-objective combinatorial optimization problem. Int. J. Appl. Metaheuristic Comput. (IJAMC) 2 (2012) 41–57. [Google Scholar]
  • P. Schittekat, J. Kinable, K. Sorensen, M. Sevaux, F. Spieksma and J. Springael, A metaheuristic for the school bus routing problem with bus stop selection. Eur. J. Oper. Res. 229 (2013) 518–528. [Google Scholar]
  • M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35 (1987) 254–265. [Google Scholar]
  • K.C. Tan, Y.H. Chew and L.H. Lee, A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. Comput. Optim. App. 34 (2006) 115–151. [Google Scholar]
  • F.A. Tang and R.D. Galvao, A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service. Comput. Oper. Res. 33 (2006) 595–619. [Google Scholar]
  • A.S. Tasan and M. Gen, A genetic algorithm based approach to vehicle routing problem with simultaneous pick-up and deliveries. Comput. Ind. Eng. 62 (2012) 755–761. [Google Scholar]
  • R. Thangaraj, M. Pant, A. Abraham and P. Bouvry, Particle swarm optimization: hybridization perspectives and experimental illustrations. Appl. Math. Comput. 217 (2011) 5208–5226. [Google Scholar]
  • P. Toth and D. Vigo, editors. The Vehicle Routing Problem (Monographs on Discrete Mathematics and Applications). SIAM (2001). [Google Scholar]
  • L. Wang, X. Wang, J. Fu and L. Zhen, A novel probability binary particle swarm optimization algorithm and its application. J. Softw. 3 (2008) 28–35. [Google Scholar]
  • C. Wang, D. Mu, F. Zhao and J.W. Sutherland, A parallel simulated annealing method for the vehicle routing problem with simultaneous pickup-delivery and time windows. Comput. Ind. Eng. 8 (2015) 111–122. [Google Scholar]
  • L.A. Wolsey, Integer Programming. John Wiley & Sons (1998). [Google Scholar]
  • W. Zhou, T. Song, F. He and X. Liu, Multiobjective vehicle routing problem with route balance based on genetic algorithm. Discrete Dyn. Nat. Soc. 2013 (2013) 1–9. [Google Scholar]
  • E. Zitzler, M. Laumanns and L. Thiele, SPEA2: improving the strength pareto evolutionary algorithm, edited by K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou and T. Fogarty. In: EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control With Applications to Industrial Problems (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.