Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2615 - 2629
DOI https://doi.org/10.1051/ro/2021117
Published online 20 September 2021
  • A.B. Abubakar and P. Kumam, A descent Dai-Liao conjugate gradient method for nonlinear equations. Numer. Algor. 81 (2019) 197–210. [Google Scholar]
  • A.B. Abubakar, J. Rilwan, S.E. Yimer, A.H. Ibrahim and I. Ahmed, Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints. Thai J. Math. 18 (2020) 501–517. [Google Scholar]
  • N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization. Comput. Optim. Appl. 38 (2007) 401–416. [Google Scholar]
  • A.M. Awwal, P. Kumam, H. Mohammad, W. Watthayu and A.B. Abubakar, A Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing l1 regularized problem. Optimization 70 (2021) 1231–1259. [Google Scholar]
  • Y.H. Dai and L.Z. Liao, New conjugacy conditons and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.H. Dai, Y.K. Huang and X.W. Liu, A family of spectral gradient methods for optimization. Comput. Optim. Appl. 74 (2019) 43–65. [Google Scholar]
  • Z. Dai, X. Chen and F. Wen, A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270 (2015) 378–386. [Google Scholar]
  • Y. Ding, Y. Xiao and J. Li, A class of conjugate gradient methods for convex constrained monotone equations. Optimization 66 (2017) 2309–2328. [Google Scholar]
  • S.P. Dirkse and M.C. Ferris, A collection of nonlinear mixed complementarity problems. Optim. Math. Softw. 5 (1995) 319–345. [Google Scholar]
  • E.D. Dolan and J.J. More, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [Google Scholar]
  • P. Gao, C. He and Y. Liu, An adaptive family of projection methods for constrained monotone equations with applications. Appl. Math. Comput. 359 (2019) 1–16. [Google Scholar]
  • A.S. Halilu, A. Majumder, M.Y. Waziri and K. Ahmed, Signal recovery with convex constrained nonlinear monotone equations through conjugate gradient hybrid approach. Math. Comput. Simulat. 187 (2021) 520–539. [Google Scholar]
  • P. Kaelo and M. Koorapetse, A global convergent projection method for systems of nonlinear monotone equations. Int. J. Comput. Math. 98 (2021) 421–434. [Google Scholar]
  • M. Koorapetse, P. Kaelo and E.R. Offen, A scaled derivative-free projection method for solving nonlinear monotone equations. Bull. Iran. Math. Soc. 45 (2019) 755–770. [Google Scholar]
  • M. Koorapetse, P. Kaelo, S. Lekoko and T. Diphofu, A derivative-free RMIL conjugate gradient projection method for convex constrained nonlinear monotone equations with applications in compressive sensing. Appl. Numer. Math. 165 (2021) 431–441. [Google Scholar]
  • J. Liu and Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numer. Algor. 82 (2019) 245–262. [Google Scholar]
  • P. Liu, J. Jian and X. Jiang, A new conjugate gradient projection method for convex constrained nonlinear equations. Complexity 2020 (2020) 1–14. [Google Scholar]
  • J.K. Liu, J.L. Xu and L.Q. Zhang, Partially symmetrical derivative-free Liu Storey projection method for convex constrained equations. Int. J. Comput. Math. 96 (2019) 1787–1798. [Google Scholar]
  • I.E. Livieris and P. Pintelas, Globally convergent modified Perry’s conjugate gradient method. Appl. Math. Comput. 218 (2012) 9197–9207. [Google Scholar]
  • K. Meintjes and A.P. Morgan, A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22 (1987) 333–361. [Google Scholar]
  • Y. Ou and J. Li, A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints. J. Appl. Math. Comput. 56 (2018) 195–216. [Google Scholar]
  • A. Perry, A modified conjugate gradient algorithm. Oper. Res. 26 (1978) 1073–1078. [Google Scholar]
  • J. Sabi’u, A. Shah and M.Y. Waziri, Two optimal Hager-Zhang conjugate gradient methods for solving monotone nonlinear equations. Appl. Numer. Math. 153 (2020) 217–233. [Google Scholar]
  • D. Shanno, On the convergence of a new conjugate gradient algorithm. SIAM J. Numer. Anal. 15 (1978) 1247–1257. [Google Scholar]
  • M.V. Solodov and B.F. Svaiter, A Globally Convergent Inexact Newton Method for Systems of Monotone Equations, edited by M. Fukushima and L. Qi. In: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Vol. 22 of Applied Optimization. Springer, Boston, MA (1998) 355–369. [Google Scholar]
  • M. Sun and J. Liu, New hybrid conjugate gradient projection method for the convex constrained equations. Calcolo 53 (2016) 399–411. [Google Scholar]
  • M.Y. Waziri, K. Ahmed and J. Sabi’u, A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear equations. Arab. J. Math. 9 (2020) 443–457. [Google Scholar]
  • M.Y. Waziri, K. Ahmed, J. Sabi’u and A.S. Halilu, Enhanced Dai-Liao conjugate gradient methods for systems of nonlinear equations. SeMA J. 78 (2021) 15–51. [Google Scholar]
  • Z. Wei, G. Li and L. Qi, New quasi-Newton methods for unconstrained optimization problems. Appl. Math. Comput. 175 (2006) 1156–1188. [MathSciNet] [Google Scholar]
  • S. Yao and L. Ning, An adaptive three-term conjugate gradient method based on self-scaling memoryless BFGS matrix. J. Comput. Appl. Math. 332 (2018) 72–85. [Google Scholar]
  • Q.-R. Yan, X.-Z. Peng and D.-H. Li, A globally convergent derivative-free method for solving large-scale nonlinear monotone equations. J. Comput. Appl. Math. 234 (2010) 649–657. [Google Scholar]
  • L. Zhang, W.J. Zhou and D.H. Li, A descent modified Polak-Ribiere-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26 (2006) 629–640. [Google Scholar]
  • L. Zheng, L. Yang and Y. Liang, A modified spectral gradient projection method for solving non-linear monotone equations with convex constraints and its application. IEEE Acess 99 (2020) 1–1. [Google Scholar]
  • W.Y. Zhao and D. Li, Monotonicity of fixed point and normal mapping associated with varriational inequality and its application. SIAM. J. Optim. 11 (2000) 962–973. [Google Scholar]
  • L. Zheng, L. Yang and Y. Liang, A conjugate gradient projection method for solving equations with convex constraints. J. Comput. Appl. Math. 375 (2020) 399–411. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.