Open Access
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2769 - 2783
Published online 20 September 2021
  • L. Abdel-Illah, E. Veljovic, L. Gurbeta and A. Badnjevic, Applications of QSAR study in drug design. Int. J. Eng. Res. Technol. 6 (2017) 582–587. [Google Scholar]
  • P. Ambure, R. Balasaheb Aher, A. Gajewicz, T. Puzyn and K. Roy, “NanoBRIDGES’’ software: open access tools to perform QSAR and nano-QSAR modeling. Chemom. Intell. Lab. Syst. 147 (2015) 1–13. [Google Scholar]
  • E. Anderson, G.D. Veith and D. Weininger, SMILES: a line notation and computerized interpreter for chemical structures. Report No. EPA/600/M-87/021. U.S. Environmental Protection Agency, Environmental Research Laboratory-Duluth, Duluth, MN 55804 (1987). [Google Scholar]
  • M. Bruder, G. Polo and D.B.B. Trivella, Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat. Prod. Rep. R Soc. Chem. 37 (2020) 488–514. [Google Scholar]
  • D.-S. Cao, N. Xiao, Q.-S. Xu and A.F. Chen, Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics 31 (2015) 279–281. [PubMed] [Google Scholar]
  • F. Chollet and J.J. Allaire, Deep Learning with R. Manning Publications Co. (2018). [Google Scholar]
  • A.C. Elliott and W. Woodward, Analysis – Quick Reference Guide, With SPSS Examples. SAGE Publications, Inc. (2006). [Google Scholar]
  • E.S. Goll and P.C. Jurs, Prediction of the normal boiling points of organic compounds from molecular structures with a computational neural network model. J. Chem. Inf. Comput. Sci. 39 (1999) 974–983. [Google Scholar]
  • R. Guha, Chemical informatics functionality in R. J. Stat. Softw. 18 (2007) 1–16. [Google Scholar]
  • T. Hirano and M. Murakami, COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity 52 (2020) 731–733. [PubMed] [Google Scholar]
  • R.S. Hunter, F.D. Culver and A. Fitzgerald, SMILES user manual. A simplified molecular input line entry system. Includes extended SMILES for defining fragments. Review Draft, Internal Report, Montana State University, Institute for Biological and Chemical Process Control (IPA), Bozeman, MT (1987). [Google Scholar]
  • A. Issacs and E.B. Uvarov, A Dictionary of Science. The English Language Book Society (1979). [Google Scholar]
  • G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning, 1st edition. Springer (2013). [Google Scholar]
  • L.S. Konda, S. Keerthi Praba and R. Kristam, hERG liability classification models using machine learning techniques. Comput. Toxicol. 12 (2019) 100089. [Google Scholar]
  • D. Kumar, Business Analytics. John Wiley (2017). [Google Scholar]
  • P.K. Ojha, S. Kar, J.G. Krishna, K. Roy and J. Leszczynski, Therapeutics for COVID-19: from computation to practices – where we are, where we are heading to. Mol Divers 25 (2021) 625–659. [PubMed] [Google Scholar]
  • D.S. Paul and N. Gautham, MOLS 2.0: software package for peptide modeling and protein–ligand docking. J. Mol. Model 22 (2016) 239. [PubMed] [Google Scholar]
  • D.S. Paul and N. Gautham, Protein-small molecule docking with receptor flexibility in iMOLSDOCK. J. Comput.-Aided Mol. Design 32 (2018) 889–900. [Google Scholar]
  • R. Schalkoff, Pattern Recognition – Statistical, Structural and Neural Approaches. John Wiley & Sons Inc., USA (1992). [Google Scholar]
  • J.M. Smith and B. Toppur, Euclidean Steiner minimal trees, minimum energy configurations, and the embedding problem of weighted graphs in E3. Discrete Appl. Math. 71 (1996) 187–215. [Google Scholar]
  • M. Tardu, F. Rahim, H. Kavakli and M. Turkay, MILP-hyperbox classification for structure-based drug design in the discovery of small molecule inhibitors of SIRTUIN6. RAIRO:OR 50 (2016) 387–400. [Google Scholar]
  • The OpenScience Project. [Google Scholar]
  • K. Vengadesan and N. Gautham, Enhanced sampling of the molecular potential energy surface using mutually orthogonal latin squares: application to peptide structures. Biophys. J. 84 (2003) 2897–906. [Google Scholar]
  • J. Wang, Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model. 60 (2020) 3277–3286. [PubMed] [Google Scholar]
  • D. Weininger, SMILES, a chemical language and information system. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28 (1988) 31–36. [CrossRef] [Google Scholar]
  • D. Weininger, A. Weininger and J.L. Weininger, SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comput. Sci. 29 (1989) 97–101. [CrossRef] [Google Scholar]
  • G.J. Williams, Data mining with rattle and R: The art of excavating data for knowledge discovery. Series Use R!. Springer (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.