Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2785 - 2806
DOI https://doi.org/10.1051/ro/2021125
Published online 20 September 2021
  • V. Agrawal and S. Seshadri, Distribution free bounds for service constrained (q, r) inventory systems. Naval Res. Logistics (NRL) 47 (2000) 635–656. [Google Scholar]
  • F.A. Akinniyi and E.A. Silver, Inventory control using a service constraint on the expected duration of stockouts. AIIE Trans. 13 (1981) 343–348. [Google Scholar]
  • S. Axsäter, A simple procedure for determining order quantities under a fill rate constraint and normally distributed lead-time demand. Eur. J. Oper. Res. 174 (2006) 480–491. [Google Scholar]
  • S. Axsäter, Inventory Control. Springer 225 (2015). [Google Scholar]
  • E. Babiloni and E. Guijarro, Fill rate: from its definition to its calculation for the continuous (s, q) inventory system with discrete demands and lost sales. Central Eur. J. Oper. Res. 28 (2020) 35–43. [Google Scholar]
  • D. Bertsimas and I.C. Paschalidis, Probabilistic service level guarantees in make-to-stock manufacturing systems. Oper. Res. 49 (2001) 119–133. [Google Scholar]
  • M. Bijvank, Periodic review inventory systems with a service level criterion. J. Oper. Res. Soc. 65 (2014) 1853–1863. [Google Scholar]
  • F.Y. Chen and D. Krass, Inventory models with minimal service level constraints. Eur. J. Oper. Res. 134 (2001) 120–140. [Google Scholar]
  • N. Craig, N. DeHoratius and A. Raman, The impact of supplier inventory service level on retailer demand. Manuf. Ser. Oper. Manage. 18 (2016) 461–474. [Google Scholar]
  • P. Escalona, F. Ordóñez and I. Kauak, Critical level rationing in inventory systems with continuously distributed demand. OR Spectr. 39 (2017) 273–301. [Google Scholar]
  • P. Escalona, A. Angulo, J. Weston, R. Stegmaier and I. Kauak, On the effect of two popular service-level measures on the design of a critical level policy for fast-moving items. Comput. Oper. Res. 107 (2019) 107–126. [Google Scholar]
  • A. Federgruen and Y.-S. Zheng, An efficient algorithm for computing an optimal (r, q) policy in continuous review stochastic inventory systems. Oper. Res. 40 (1992) 808–813. [Google Scholar]
  • G. Hadley and T.M. Whitin, Analysis of inventory systems. Technical report (1963). [Google Scholar]
  • Y. Jiang, C. Shi and S. Shen, Service level constrained inventory systems. Prod. Oper. Manage. 28 (2019) 2365–2389. [Google Scholar]
  • G. Kiesmüller and A. de Kok, The customer waiting time in an (r, s, q) inventory system. Int. J. Prod. Econ. 104 (2006) 354–364. [Google Scholar]
  • H. Klemm, Lieferbereitschaft und vorratsraum in lagerhaltungsmodellen, edited by P. Linke and H. Klemm. In: Kapitel 3, Laqerhaltunqsmodelle). Verlag die Wirtschaft, Berlin (1974). [Google Scholar]
  • W.K. Kruse, Waiting time in a continuous review (s, s) inventory system with constant lead times. Oper. Res. 29 (1981) 202–207. [Google Scholar]
  • K. Muthuraman, S. Seshadri and Q. Wu, Inventory management with stochastic lead times. Math. Oper. Res. 40 (2015) 302–327. [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, G.-W. Weber and A. Mirzazadeh, Effect of price-sensitive demand and default risk on optimal credit period and cycle time for a deteriorating inventory model. RAIRO:OR 55 (2021) S2575–S2592. [Google Scholar]
  • H.N. Perera, B. Fahimnia and T. Tokar, Inventory and ordering decisions: a systematic review on research driven through behavioral experiments. Int. J. Oper. Prod. Manage. 40 (2020) 997–1039. [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, Multi-item deteriorating two-echelon inventory model with price-and stock-dependent demand: a trade-credit policy. J. Ind. Manage. Optim. 15 (2019) 1345. [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, Deteriorating inventory with preservation technology under price-and stock-sensitive demand. J. Ind. Manage. Optim. 16 (2020) 1585. [Google Scholar]
  • M. Pervin, S.K. Roy and G.-W. Weber, An integrated vendor-buyer model with quadratic demand under inspection policy and preservation technology. Hacettepe J. Math. Stat. 49 (2020) 1168–1189. [Google Scholar]
  • K. Ramaekers and G.K. Janssens, On the choice of a demand distribution for inventory management models. Eur. J. Ind. Eng. 2 (2008) 479–491. [Google Scholar]
  • K. Rosling, The Square-root Algorithm for Single-item Inventory Optimization, Department of Industrial Engineering, Växjö University, SE-351 95 (1999). [Google Scholar]
  • H. Schneider, Effect of service-levels on order-points or order-levels in inventory models. Int. J. Prod. Res. 19 (1981) 615–631. [Google Scholar]
  • H. Schneider and J.L. Ringuest, Power approximation for computing (s, s) policies using service level. Manage. Sci. 36 (1990) 822–834. [Google Scholar]
  • E.A. Silver, D.F. Pyke and R. Peterson, Inventory Management and Production Planning and Scheduling. Wiley, New York 3 (1998). [Google Scholar]
  • Y. Tan, A.A. Paul, Q. Deng and L. Wei, Mitigating inventory overstocking: optimal order-up-to level to achieve a target fill rate over a finite horizon. Prod. Oper. Manage. 26 (2017) 1971–1988. [Google Scholar]
  • H. Tempelmeier, Inventory control using a service constraint on the expected customer order waiting time. Eur. J. Oper. Res. 19 (1985) 313–323. [Google Scholar]
  • H. Tempelmeier and L. Fischer, A procedure for the approximation of the waiting time distribution in a discrete-time (r, s) inventory system. Int. J. Prod. Res. 57 (2019) 1413–1426. [Google Scholar]
  • R.H. Teunter, M.Z. Babai and A.A. Syntetos, ABC classification: service levels and inventory costs. Prod. Oper. Manage. 19 (2010) 343–352. [Google Scholar]
  • R.H. Teunter, A.A. Syntetos and M.Z. Babai, Stock keeping unit fill rate specification. Eur. J. Oper. Res. 259 (2017) 917–925. [Google Scholar]
  • U.W. Thonemann, A.O. Brown and W.H. Hausman, Easy quantification of improved spare parts inventory policies. Manage. Sci. 48 (2002) 1213–1225. [Google Scholar]
  • M.-Z. Wang and W.-L. Li, On convexity of service-level measures of the discrete (r, q) inventory system. In: Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007). IEEE (2007) 417. [Google Scholar]
  • A.Z. Zeng and J.C. Hayya, The performance of two popular service measures on management effectiveness in inventory control. Int. J. Prod. Econ. 58 (1999) 147–158. [Google Scholar]
  • H. Zhang, A note on the convexity of service-level measures of the (r, q) system. Manage. Sci. 44 (1998) 431–432. [Google Scholar]
  • P. Zipkin, Inventory service-level measures: convexity and approximation. Manage. Sci. 32 (1986) 975–981. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.