Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 3041 - 3048
DOI https://doi.org/10.1051/ro/2021139
Published online 13 October 2021
  • F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983). [Google Scholar]
  • S. Dempe, J. Dutta and B.S. Mordukhovich, New necessary optimality conditions in optimistic bilevel programming. Optimization 56 (2007) 577–604. [Google Scholar]
  • N.A. Gadhi, A note on the paper ``Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem’’. J. Ind. Manag. Optim. (2021). DOI: 10.3934/jimo.2021103 . [Google Scholar]
  • N. Gadhi and S. Dempe, Necessary optimality conditions and a new approach to multi-objective bilevel optimization problems. J. Optim. Theory Appl. 155 (2012) 100–114. [Google Scholar]
  • N.A. Gadhi and L. Lafhim, Optimality conditions for a bilevel optimization problem in terms of KKT multipliers and convexificators. Croatian Oper. Res. Rev. 10 (2019) 329–335. [Google Scholar]
  • M.A. Goberna and M.A. López, Linear Semi-Infinite Optimization. Wiley, Chichester (1998). [Google Scholar]
  • J.B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4 (1979) 79–97. [Google Scholar]
  • B. Kohli, Optimality conditions for optimistic bilevel programming problem using convexifactors. J. Optim. Theory Appl. 152 (2012) 632–651. [Google Scholar]
  • L. Lafhim, N. Gadhi, K. Hamdaoui and F. Rahou, Necessary optimality conditions for a bilevel multiobjective programming problem via a Ψ-reformulation. Optimization 67 (2018) 2179–2189. [Google Scholar]
  • C. Lemaréchal, An introduction to the theory of nonsmooth optimization. optimization 17 (1986) 827–858. [Google Scholar]
  • J.E. Martnez-Legaz, Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints. Optim. Lett. 9 (2015) 1017–1023. [Google Scholar]
  • F. Mashkoorzadeh, N. Movahedian and S. Nobakhtian, Optimality conditions for nonconvex constrained optimization problems. Num. Funct. Anal. Optim. 40 (2019) 1918–1938. [Google Scholar]
  • P. Michel and J.P. Penot, A generalized derivative for calm and stable functions. Diff. Int. Equ. 5 (1992) 433–454. [Google Scholar]
  • J.V. Outrata, On the numerical solution of a class of Stackelberg problems. ZOR-Methods Mod. Oper. Res. 34 (1990) 255–277. [Google Scholar]
  • B.N. Pshenichnyi, Necessary Conditions for an Extremum. Marcel Dekker Inc., New York, NY (1971). [Google Scholar]
  • N. Sisarat and R. Wangkeeree, Characterizing the solution set of convex optimization problems without convexity of constraints. Optim. Lett. 14 (2020) 1127–1144. [Google Scholar]
  • J.J. Ye, Necessary optimality conditions for multiobjective bilevel programs. Math. Oper. Res. 36 (2011) 165–184. [Google Scholar]
  • J.J. Ye and D.L. Zhu, Optimality conditions for bilevel programming problems. Optimization 33 (1995) 9–27. [Google Scholar]
  • W.I. Zangwill, Nonlinear Programming: A Unified Approach. Prentice-Hall, Englewood Cliffs, NJ (1969). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.