Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 3049 - 3072
DOI https://doi.org/10.1051/ro/2021136
Published online 13 October 2021
  • O. Abedinia, M. Lotfi, M. Bagheri, B. Sobhani, M. Shafie-khah and J.P.S. Catalão, Improved EMD-based complex prediction model for wind power forecasting. IEEE Trans. Sustain. Energy 11 (2020) 2790–802. [Google Scholar]
  • R. Abhinav, N.M. Pindoriya, J. Wu and C. Long, Short-term wind power forecasting using wavelet-based neural network. Energy Proc. 142 (2017) 455–460. [Google Scholar]
  • R. Azimi, M. Ghofrani and M. Ghayekhloo, A hybrid wind power forecasting model based on data mining and wavelets analysis. Energy Convers. Manage. 127 (2016) 208–225. [Google Scholar]
  • D. Baptista, J.P. Carvalho and F. Morgado-Dias, Comparing different solutions for forecasting the energy production of a wind farm. Neural Comput. Appl. 32 (2020) 15825–15833. [Google Scholar]
  • H.H. Çevik, M. Çunkas and K. Polat, A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods. Phys. Stat. Mech. Appl. 534 (2019). [Google Scholar]
  • J. Dai, Y. Tan and X. Shen, Investigation of energy output in mountain wind farm using multiple-units SCADA data. Appl. Energy 239 (2019) 225–38. [Google Scholar]
  • H. Demolli, A.S. Dokuz, A. Ecemis and M. Gokcek, Wind power forecasting based on daily wind speed data using machine learning algorithms. Energy Convers. Manage. 198 (2019) 111823. [Google Scholar]
  • H.S. Dhiman, D. Deb and J.M. Guerrero, Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renew. Sustain. Energy Rev. 108 (2019) 369–379. [Google Scholar]
  • S. Ding, R. Li and Z. Tao, A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting. Energy Convers. Manage. 227 (2021) 113644. [Google Scholar]
  • E. Erdem and J. Shi, ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 88 (2011) 1405–1414. [Google Scholar]
  • A.A. Ezzat, Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations. Appl. Energy 269 (2020) 115034. [Google Scholar]
  • A. Fabbri, T.G. San Román, J.R. Abbad and V.H.M. Méndez Quezada, Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market. IEEE Trans. Power Syst. 20 (2005) 1440–1446. [Google Scholar]
  • S.J. Ghoushchi, S. Manjili, A. Mardani and M.K. Saraji, An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: a case study in wind power plant. Energy 223 (2021) 120052. [Google Scholar]
  • S. Guefano, J.G. Tamba, T.E.W. Azong and L. Monkam, Methodology for forecasting electricity consumption by Grey and Vector autoregressive models. MethodsX 8 (2021) 101296. [PubMed] [Google Scholar]
  • Z. Guo, W. Zhao, H. Lu and J. Wang, Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 37 (2012) 241–249. [Google Scholar]
  • K. Higashiyama, Y. Fujimoto and Y. Hayashi, Feature extraction of NWP data for wind power forecasting using 3D-convolutional neural networks. Energy Proc. 155 (2018) 350–358. [Google Scholar]
  • R.J. Hodrick and E.C. Prescott, Postwar U.S. business cycles: an empirical investigation. J Money, Credit Bank 29 (1997) 1. [Google Scholar]
  • J. Hu, J. Wang and G. Zeng, A hybrid forecasting approach applied to wind speed time series. Renew. Energy 60 (2013) 185–194. [Google Scholar]
  • R.J. Hyndman, A.B. Koehler, R.D. Snyder and S. Grose, A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 18 (2002) 439–454. [Google Scholar]
  • W.D. Jacondino, A.L. da Silva Nascimento, L. Calvetti, G. Fisch, C.A.A. Beneti and S.R. da Paz, Hourly day-ahead wind power forecasting at two wind farms in northeast Brazil using WRF model. Energy 230 (2021) 120841. [Google Scholar]
  • S.M.J. Jalali, S. Ahmadian, M. Khodayar, A. Khosravi, V. Ghasemi, M. Shafie-khah, S. Nahavandi and J.P. Catalão, Towards novel deep neuroevolution models: chaotic levy grasshopper optimization for short-term wind speed forecasting. Eng. Comput. (2021). DOI: 10.1007/s00366-021-01356-0. [Google Scholar]
  • S.A. Javed, B. Zhu and S. Liu, Forecast of biofuel production and consumption in top CO2 emitting countries using a novel grey model. J. Clean. Prod. 276 (2020) 123997. [Google Scholar]
  • Z.Q. Jia, Z.F. Zhou, H.J. Zhang, B. Li and Y.X. Zhang, Forecast of coal consumption in Gansu Province based on Grey–Markov chain model. Energy 199 (2020) 117444. [Google Scholar]
  • W. Jiang, X. Wu, Y. Gong, W. Yu and X. Zhong, Holt-Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy 193 (2020) 807–814. [Google Scholar]
  • D. Ju-Long, Control problems of grey systems. Syst. Control Lett. 1 (1982) 288–294. [Google Scholar]
  • R.G. Kavasseri and K. Seetharaman, Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 34 (2009) 1388–1393. [Google Scholar]
  • A. Kisvari, Z. Lin and X. Liu, Wind power forecasting – a data-driven method along with gated recurrent neural network. Renew. Energy 163 (2021) 1895–909. [Google Scholar]
  • A. Kusiak and W. Li, Short-term prediction of wind power with a clustering approach. Renew. Energy 35 (2010) 2362–2369. [Google Scholar]
  • L. Lazić, G. Pejanović and M. Živković, Wind forecasts for wind power generation using the ETA model. Renew Energy 35 (2010) 1236–1243. [Google Scholar]
  • C.D. Lewis, A Radical Guide to Exponential Smoothing and Curve Fitting. Butterworth-Heinemann (1982). [Google Scholar]
  • S. Li, Y. Miao, G. Li and M. Ikram, A novel varistructure grey forecasting model with speed adaptation and its application. Math. Comput. Simul. 172 (2020) 45–70. [Google Scholar]
  • N. Li, J. Wang, L. Wu and Y. Bentley, Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization. Energy 215 (2021) 119118. [Google Scholar]
  • W. Lifeng, L. Sifeng and Y. Li-gen, Discrete grey model based on fractional order accumulate. Syst. Eng. Theory Pract. 34 (2014) 1822–1827. [Google Scholar]
  • Y.-H. Lin and P.-C. Lee, Novel high-precision grey forecasting model. Autom. Constr. 16 (2007) 771–777. [Google Scholar]
  • Z. Lin and X. Liu, Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy 201 (2020) 117693. [Google Scholar]
  • F. Liu and H.G. Zhang, Research status and existing problems of seasonal index. Stat. Decis. (2008) 11–14. [Google Scholar]
  • X. Liu, B. Moreno and A.S. Garca, A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors. Energy 115 (2016) 1042–1054. [Google Scholar]
  • X. Ma, X. Mei, W. Wu, X. Wu and B. Zeng, A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China. Energy 178 (2019) 487–507. [Google Scholar]
  • J.W. Messner and P. Pinson, Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting. Int. J. Forecast. 35 (2019) 1485–1498. [Google Scholar]
  • N. Mohan, K.P. Soman and S. Sachin Kumar, A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model. Appl. Energy 232 (2018) 229–244. [Google Scholar]
  • S. Moonchai and N. Chutsagulprom, Short-term forecasting of renewable energy consumption: augmentation of a modified grey model with a Kalman filter. Appl. Soft Comput. 87 (2020) 105994. [Google Scholar]
  • J. Naik, R. Bisoi and P.K. Dash, Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression. Renew. Energy 129 (2018) 357–383. [Google Scholar]
  • N. Norouzi and M. Fani, Black gold falls, black plague arise – an Opec crude oil price forecast using a gray prediction model. Upstream Oil Gas Technol. 5 (2020) 100015. [Google Scholar]
  • D. Prieto-Herráez, L. Fras-Paredes, J.M. Cascón, S. Lagüela-López, M. Gastón-Romeo, M.I. Asensio-Sevilla, I. Martín-Nieto, P.M. Fernandes-Correia, P. Laiz-Alonso, O.F. Carrasco-Díaz and C. Saez-Blazquez, Local wind speed forecasting based on WRF-HDWind coupling. Atmos. Res. 248 (2021) 105219. [Google Scholar]
  • M.A. Prósper, C. Otero-Casal, F.C. Fernández and G. Miguez-Macho, Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations. Renew. Energy 135 (2019) 674–686. [Google Scholar]
  • W.Y. Qian and Y.G. Dang, GM(1, 1) model based on oscillation sequences. Syst. Eng. Pract. 29 (2009) 149–154. [Google Scholar]
  • W. Qian and J. Wang, An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China. Energy 209 (2020) 118499. [Google Scholar]
  • U. Sahin, Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by 2030 using optimized fractional nonlinear grey Bernoulli model. Sustain. Prod. Consum. 25 (2021) 1–14. [PubMed] [Google Scholar]
  • J. Wang, X. Ma, J. Wu and Y. Dong, Optimization models based on GM(1, 1) and seasonal fluctuation for electricity demand forecasting. Int. J. Electr. Power Energy Syst. 43 (2012) 109–117. [Google Scholar]
  • Z.X. Wang, Q. Li and L.L. Pei, Grey forecasting method of quarterly hydropower production in China based on a data grouping approach. Appl. Math. Model. 51 (2017) 302–316. [Google Scholar]
  • Z.X. Wang, Q. Li and L.L. Pei, A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors. Energy 154 (2018) 522–534. [Google Scholar]
  • Z.X. Wang, L.Y. He and H.H. Zheng, Forecasting the residential solar energy consumption of the United States. Energy 178 (2019) 610–623. [Google Scholar]
  • Z.X. Wang, Z.W. Wang and Q. Li, Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors. Energy 200 (2020) 117460. [Google Scholar]
  • G. Wang, R. Jia, J. Liu and H. Zhang, A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning. Renew. Energy 145 (2020) 2426–2434. [Google Scholar]
  • C. Wang, H. Zhang and P. Ma, Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network. Appl. Energy 259 (2020) 114139. [Google Scholar]
  • R. Weron, Measuring long-range dependence in electricity prices BT, edited by H. Takayasu. In: Empirical Science of Financial Fluctuations. Springer Japan, Tokyo (2002) 110–119. [Google Scholar]
  • P.R. Winters, Forecasting sales by exponentially weighted moving averages. Manage. Sci. 6 (1960) 324–342. [Google Scholar]
  • L. Wu, S. Liu, L. Yao, S. Yan and D. Liu, Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 1775–1785. [Google Scholar]
  • W. Wu, X. Ma, B. Zeng, Y. Wang and W. Cai, Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model. Renew. Energy 140 (2019) 70–87. [Google Scholar]
  • W.-Z. Wu, H. Pang, C. Zheng, W. Xie and C. Liu, Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: a case of Hubei in China. Energy 229 (2021) 120714. [Google Scholar]
  • X. Xiao, J. Yang, S. Mao, J. Wen, An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow, Appl. Math. Model. 51 (2017) 386–404. [Google Scholar]
  • N.M. Xie and S.F. Liu, Discrete grey forecasting model and its optimization. Appl. Math. Model. 33 (2009) 1173–1186. [Google Scholar]
  • C. Yildiz, H. Acikgoz, D. Korkmaz and U. Budak, An improved residual-based convolutional neural network for very short-term wind power forecasting. Energy Convers. Manage. 228 (2021) 113731. [Google Scholar]
  • M.U. Yousuf, I. Al-Bahadly and E. Avci, A modified GM(1,1) model to accurately predict wind speed. Sustain. Energy Technol. Assess. 43 (2021) 100905. [Google Scholar]
  • Y. Zhang, A Study of the Theory and Application of Structural Time Series Model in Seasonal Adjustment (in Chinese). Nankai University (2013). [Google Scholar]
  • S. Zhou, Y. Wang, Y. Zhou, L.E. Clarke and J.A. Edmonds, Roles of wind and solar energy in China’s power sector: implications of intermittency constraints. Appl. Energy 213 (2018) 22–30. [Google Scholar]
  • W. Zhou, X. Wu, S. Ding and J. Pan, Application of a novel discrete grey model for forecasting natural gas consumption: a case study of Jiangsu Province in China. Energy 200 (2020) 117443. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.